Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biomater Adv ; 160: 213860, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38640876

ABSTRACT

Glioblastoma multiforme (GBM), a primary brain cancer, is one of the most aggressive forms of human cancer, with a very low patient survival rate. A characteristic feature of GBM is the diffuse infiltration of tumor cells into the surrounding brain extracellular matrix (ECM) that provide biophysical, topographical, and biochemical cues. In particular, ECM stiffness and composition is known to play a key role in controlling various GBM cell behaviors including proliferation, migration, invasion, as well as the stem-like state and response to chemotherapies. In this review, we discuss the mechanical characteristics of the GBM microenvironment at multiple length scales, and how biomaterial scaffolds such as polymeric hydrogels, and fibers, as well as microfluidic chip-based platforms have been employed as tissue mimetic models to study GBM mechanobiology. We also highlight how such tissue mimetic models can impact the field of GBM mechanobiology.


Subject(s)
Brain Neoplasms , Extracellular Matrix , Glioblastoma , Glioblastoma/pathology , Humans , Brain Neoplasms/pathology , Brain Neoplasms/drug therapy , Extracellular Matrix/pathology , Extracellular Matrix/physiology , Extracellular Matrix/metabolism , Hydrogels/chemistry , Tumor Microenvironment/physiology , Biocompatible Materials , Animals , Biomechanical Phenomena , Biophysics
SELECTION OF CITATIONS
SEARCH DETAIL
...