Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Adv Mater ; 36(6): e2301986, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37435995

ABSTRACT

The development of artificial intelligence has posed a challenge to machine vision based on conventional complementary metal-oxide semiconductor (CMOS) circuits owing to its high latency and inefficient power consumption originating from the data shuffling between memory and computation units. Gaining more insights into the function of every part of the visual pathway for visual perception can bring the capabilities of machine vision in terms of robustness and generality. Hardware acceleration of more energy-efficient and biorealistic artificial vision highly necessitates neuromorphic devices and circuits that are able to mimic the function of each part of the visual pathway. In this paper, we review the structure and function of the entire class of visual neurons from the retina to the primate visual cortex within reach (Chapter 2) are reviewed. Based on the extraction of biological principles, the recent hardware-implemented visual neurons located in different parts of the visual pathway are discussed in detail in Chapters 3 and 4. Furthermore, valuable applications of inspired artificial vision in different scenarios (Chapter 5) are provided. The functional description of the visual pathway and its inspired neuromorphic devices/circuits are expected to provide valuable insights for the design of next-generation artificial visual perception systems.


Subject(s)
Artificial Intelligence , Visual Pathways , Animals , Vision, Ocular , Computers , Visual Perception , Primates
2.
Mater Horiz ; 11(4): 939-948, 2024 02 19.
Article in English | MEDLINE | ID: mdl-38078356

ABSTRACT

Being capable of processing large amounts of redundant data and decreasing power consumption, in-sensor computing approaches play significant roles in neuromorphic computing and are attracting increasing interest in perceptual information processing. Herein, we proposed a high performance humidity-sensitive memristor based on a Ti/graphene oxide (GO)/HfOx/Pt structure and verified its potential for application in remote health management and contactless human-machine interfaces. Since GO possesses abundant hydrophilic groups (carbonyl, epoxide, and hydroxyl), the memristor shows a high humidity sensitivity, fast response, and wide response range. By utilizing the proton-modulated redox reaction, humidity exposure to the memristor induces a dynamic change in the switching between high and low resistance states, ensuring essential synaptic learning functions, such as paired-pulse facilitation, spike number-dependent plasticity, and spike amplitude-dependent plasticity. More importantly, based on the humidity-induced salient features originating from the abundant hydrophilic functional groups in GO, we have implemented a noncontact human-machine interface utilizing the respiratory mode in humans, demonstrating the potential of promoting health monitoring applications and effectively blocking virus transmission. In addition, the high recognition accuracy of contactless handwriting in a 5 × 5 array artificial neural network was successfully achieved, which is attributed to the excellent emulated synaptic behaviors. This study provides a feasible method to develop an excellent humidity-sensitive memristor for constructing efficient in-sensor computing for application in health management and contactless human-computer interaction.


Subject(s)
Cognition , Computers , Graphite , Humans , Humidity , Epoxy Compounds
3.
Adv Mater ; 36(6): e2308153, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37939686

ABSTRACT

Memristor with low-power, high density, and scalability fulfills the requirements of the applications of the new computing system beyond Moore's law. However, there are still nonideal device characteristics observed in the memristor to be solved. The important observation is that retention and speed are correlated parameters of memristor with trade off against each other. The delicately modulating distribution and trapping level of defects in electron migration-based memristor is expected to provide a compromise method to address the contradictory issue of improving both switching speed and retention capability. Here, high-performance memristor based on the structure of ITO/Ni single-atoms (NiSAs/N-C)/Polyvinyl pyrrolidone (PVP)/Au is reported. By utilizing well-distributed trapping sites , small tunneling barriers/distance and high charging energy, the memristor with an ultrafast switching speed of 100 ns, ultralong retention capability of 106  s, a low set voltage (Vset ) of ≈0.7 V, a substantial ON/OFF ration of 103 , and low spatial variation in cycle-to-cycle (500 cycles) and device-to-device characteristics (128 devices) is demonstrated. On the premise of preserving the strengths of a fast switching speed, this memristor exhibits ultralong retention capability comparable to the commercialized flash memory. Finally, a memristor ratioed logic-based combinational memristor array to realize the one-bit full adder is further implemented.

4.
Colloids Surf B Biointerfaces ; 189: 110818, 2020 May.
Article in English | MEDLINE | ID: mdl-32018138

ABSTRACT

Escherichia coli strain Nissle 1917 (EcN) has been widely shown to effectively treat inflammatory bowel diseases (IBDs). Unfortunately, after oral administration, EcN viability dramatically decreases due to severe environmental factors, including low gastric pH, temperature and osmotic pressure. To address these challenges and improve oral bio-availability, this study utilized layer-by-layer assembly (LbL) and ionic cross-linking with CaCl2 as a method of EcN encapsulation (GEcN). Upon examination, GEcN cells were shown to maintain their ability to grow and proliferate, but had a slightly longer stationary phase (10 h) relative to free EcN (4 h). When exposed to simulated gastric fluid (SGF), a higher number of GEcN cells survived up to 12 h when compared to the other groups. To assess the therapeutic effect of EcN encapsulation in vivo, a TNBS-induced colitis rat model was established. When compared with the oral administration of free EcN, GEcN exhibited a significantly enhanced anti-inflammatory effect. Furthermore, GEcN treatment showed a lower disease activity index (DAI), decreased pro-inflammatory cytokine expression (MPO, TNF-α, IL-6) and increased anti-inflammatory cytokine expression (IL-10). Additionally, rats that received GEcN had much higher ZO-1 expression levels. These results suggest that EcN encapsulation in a chitosan-alginate matrix when utilizing the LbL assembly with CaCl2 cross-linking can improve probiotic viability in a gastric environmental and thereby offer a more effective treatment for IBDs.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Inflammatory Bowel Diseases/drug therapy , Probiotics/therapeutic use , Alginates/chemistry , Alginates/therapeutic use , Animals , Anti-Inflammatory Agents/chemistry , Calcium Chloride/chemistry , Calcium Chloride/therapeutic use , Chitosan/chemistry , Chitosan/therapeutic use , Colitis/chemically induced , Colitis/drug therapy , Colitis/pathology , Female , Inflammatory Bowel Diseases/chemically induced , Inflammatory Bowel Diseases/pathology , Male , Particle Size , Pentobarbital/administration & dosage , Probiotics/chemistry , Rats , Rats, Sprague-Dawley , Surface Properties
5.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(12): 4072-5, 2016 Dec.
Article in Chinese | MEDLINE | ID: mdl-30256564

ABSTRACT

In fiber-optic communications, in order to achieve more data channels in the wavelength division multiplexing (WDM) system without changing the modulation wavelength range, a new type of small-sized narrowband polarizing beam splitter was designed. It can be used for data communication network expansion and improve the Signal to Noise Ratio (SNR) of the optical signal. Two kinds new film system designed were deposited on the polarizing beam splitter. One layer is narrowband filter film, while the other layer is polarizing beam splitter film. TFCalc software was used for simulation analysis, and the results shown that the bandwidth of the narrowband filter film was about 0.4 nm, and the permeability of p light from the polarizing beam splitter film was better than 99.8% in the range of 1 530~1 560 nm. Based on the above film system design, two groups film system was made on BK7 optical glass. In the experiment, light through film was spectral analysis with Agilent 8164-A type optical measuring instrument. Experimental results show that the actual bandwidth of the narrowband filter film is better than 0.4 nm, gain flatness is not less than -0.05 dB. It has a narrower bandwidth compared to the existing common 0.8 nm filter film, and it can be realized to increase the amount of data channels in the wavelength division multiplexing system with the same modulation wavelength range. Actual transmittance of p light was 99.6% through polarizing filter film, and it's slightly lower than the simulated values, but it remains better than the design requirements. Compared to conventional polarizing beam splitter, its optical signal was stronger, and it has a higher SNR. In summary, the polarizing beam splitter has better application value and practical significance.

6.
J Radiat Res ; 53(3): 377-84, 2012.
Article in English | MEDLINE | ID: mdl-22739007

ABSTRACT

This two-generation study evaluated the effects of depleted uranium (DU) on reproduction in rats. Across two generations, Wistar rats (30/sex/group) were maintained on feed containing DU at dose levels of 0 (control group), 4 (DU4 group), or 40 (DU40 group) mg kg⁻¹ day⁻¹ for 4 months prior to mating. After 4 months of exposure, the pregnancy rate, normal labour rate, and survival rate of offspring produced by F1 rats were all significantly decreased as compared to the control group, and especially in the DU40 group, these parameters fell by half to two-thirds, while no adverse effects were evident in F0 rats. The uranium content in the testes and ovaries of F1 rats in the DU4 and DU40 groups was significantly higher than that found in F0 rats. The levels of sex hormone in the serum were disorder in both generations. The enzymes related to spermiogenesis were also significantly different between generations, and the damage was more severe in F1 rats. In conclusion, the reproductive effects in F0 rats were slight after chronic oral exposure to DU, while the effects were obvious in F1 rats.


Subject(s)
Reproduction/radiation effects , Uranium/toxicity , Administration, Oral , Animals , Dose-Response Relationship, Radiation , Female , Gonadal Steroid Hormones/blood , Male , Ovary/radiation effects , Pregnancy , Rats , Rats, Wistar , Spermatogenesis/radiation effects , Testis/radiation effects , Uranium/administration & dosage , Uranium/pharmacokinetics
7.
J Radiat Res ; 50(6): 521-8, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19801891

ABSTRACT

PURPOSE: The aim of this study was to evaluate the potential genotoxicity induced by chronic oral exposure to depleted uranium (DU). MATERIALS AND METHODS: Weanling Wistar rats (F(0)), 50/sex/group, were exposed to DU in food at doses of 0, 4, or 40 mg kg(-1)day(-1) for four months. They were subsequently mated, resulting in the birth of F(1) rats. Fifty F(l) weanlings/sex/group were exposed for four months to the same dose levels as their parents. After four months, the uranium content in the tissues, the potential damage to the genetic material, and pathomorphological changes of the testicles were observed in both F(0) and F(1) rats. The genotoxicity of DU was evaluated by the following methods: sperm abnormality assessment, the bone-marrow micronucleus test, and the comet assay. RESULTS: Uranium content in F(1) rats was significantly higher than that in F(0) rats in both the kidney and ovary (p < 0.05). The sperm abnormality rate, marrow cell micronuclei rate, comet tail length, and tailed cell percentage increased in each treatment group in each generation compared with the control group (p < 0.05). When comparing F(1) with F(0) rats, significant differences were detected for most of the indicators, with F(1) rats always exhibiting more damage (p < 0.05). With regard to pathomorphological changes in the testicles, the sperm displayed atypical changes, including thickening of the anachromasis nucleolus, which seemed to be more severe in F(1) rats. CONCLUSION: Genotoxicity may be induced in rats after chronic oral exposure to a low dose of DU.


Subject(s)
Micronuclei, Chromosome-Defective/radiation effects , Uranium/administration & dosage , Uranium/toxicity , Administration, Oral , Animals , Animals, Newborn , Dose-Response Relationship, Radiation , Environmental Exposure , Female , Male , Radiation Dosage , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...