Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Language
Publication year range
1.
Acta Trop ; 255: 107217, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38677361

ABSTRACT

Vector-borne diseases are a major source of morbidity in Panama. Herein, we describe historical usage patterns of synthetic insecticides to control arthropod disease vectors in this country. We examine the influence of interventions by vector control programs on the emergence of insecticide resistance. Chemical control has traditionally focused on two mosquito species: Anopheles albimanus, a major regional malaria vector, and Aedes aegypti, a historical vector of yellow fever, and current vector of dengue, chikungunya, and Zika. Countrywide populations of An. albimanus depict hyperirritability to organochlorine insecticides administered by indoor residual spraying, although they appear susceptible to these insecticides in bioassays settings, as well as to organophosphate and carbamate insecticides in field tests. Populations of Ae. aegypti show resistance to pyrethroids, particularly in areas near Panama City, but the spread of resistance remains unknown in Ae. aegypti and Aedes albopictus. A One Health approach is needed in Panama to pinpoint the insecticide resistance mechanisms including the frequency of knockdown mutations and behavioral plasticity in populations of Anopheles and Aedes mosquitoes. This information is necessary to guide the sustainable implementation of chemical control strategies and the use of modern vector control technologies such as genetically modified mosquitoes, and endosymbiont Wolbachia-based biological control.

2.
Mem Inst Oswaldo Cruz ; 118: e220210, 2023.
Article in English | MEDLINE | ID: mdl-37377253

ABSTRACT

BACKGROUND: The massive use of insecticides in public health has exerted selective pressure resulting in the development of resistance in Aedes aegypti to different insecticides in Venezuela. Between 2010 and 2020, the only insecticides available for vector control were the organophosphates (Ops) fenitrothion and temephos which were focally applied. OBJECTIVES: To determine the state of insecticide resistance and to identify the possible biochemical and molecular mechanisms involved in three populations of Ae. aegypti from Venezuela. METHODS: CDC bottle bioassays were conducted on Ae. aegypti collected between October 2019 and February 2020 in two hyperendemic localities for dengue in Aragua State and in a malaria endemic area in Bolívar State. Insecticide resistance mechanisms were studied using biochemical assays and polymerase chain reaction (PCR) to detect kdr mutations. FINDINGS: Bioassays showed contrasting results among populations; Las Brisas was resistant to malathion, permethrin and deltamethrin, Urbanización 19 de Abril was resistant to permethrin and Nacupay to malathion. All populations showed significantly higher activity of mixed function oxidases and glutathione-S-transferases (GSTs) in comparison with the susceptible strain. The kdr mutations V410L, F1534C, and V1016I were detected in all populations, with F1534C at higher frequencies. MAIN CONCLUSION: Insecticide resistance persists in three Ae. aegypti populations from Venezuela even in the relative absence of insecticide application.


Subject(s)
Aedes , Insecticides , Pyrethrins , Animals , Insecticides/pharmacology , Pyrethrins/pharmacology , Malathion , Insecticide Resistance/genetics , Aedes/genetics , Permethrin , Venezuela , Mosquito Vectors/genetics
3.
Mem. Inst. Oswaldo Cruz ; 118: e220210, 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1440666

ABSTRACT

BACKGROUND The massive use of insecticides in public health has exerted selective pressure resulting in the development of resistance in Aedes aegypti to different insecticides in Venezuela. Between 2010 and 2020, the only insecticides available for vector control were the organophosphates (Ops) fenitrothion and temephos which were focally applied. OBJECTIVES To determine the state of insecticide resistance and to identify the possible biochemical and molecular mechanisms involved in three populations of Ae. aegypti from Venezuela. METHODS CDC bottle bioassays were conducted on Ae. aegypti collected between October 2019 and February 2020 in two hyperendemic localities for dengue in Aragua State and in a malaria endemic area in Bolívar State. Insecticide resistance mechanisms were studied using biochemical assays and polymerase chain reaction (PCR) to detect kdr mutations. FINDINGS Bioassays showed contrasting results among populations; Las Brisas was resistant to malathion, permethrin and deltamethrin, Urbanización 19 de Abril was resistant to permethrin and Nacupay to malathion. All populations showed significantly higher activity of mixed function oxidases and glutathione-S-transferases (GSTs) in comparison with the susceptible strain. The kdr mutations V410L, F1534C, and V1016I were detected in all populations, with F1534C at higher frequencies. MAIN CONCLUSION Insecticide resistance persists in three Ae. aegypti populations from Venezuela even in the relative absence of insecticide application.

4.
J Med Entomol ; 59(3): 930-939, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35389486

ABSTRACT

In Mexico, Aedes aegypti (L.) is the primary dengue vector, chikungunya, and Zika viruses. The continued use of synthetic pyrethroids has led to the development of resistance in target populations, which has diminished the effectiveness of vector control programs. Resistance has been associated with disadvantages that affect the biological parameters of resistant mosquitoes compared to susceptible ones. In the present study, the disadvantages were evaluated by parameters related to survival and reproduction ('fitness cost') after selection with deltamethrin for five generations. The parameters analyzed were the length of the development cycle, sex ratio, survival, longevity, fecundity, egg viability, preoviposition, oviposition and postoviposition periods, and growth parameters. In the deltamethrin-selected strain, there was a decrease in the development cycle duration, the percentage of pupae, the oviposition period, and eggs viability. Although mean daily fecundity was not affected after the selection process, this, together with the decrease in the survival and fecundity levels by specific age, significantly affected the gross reproductive rate (GRR), net reproductive rate (Ro), and intrinsic growth rate (rm) of the group selected for five generations with deltamethrin compared to the group without selection. Identifying the 'cost' of resistance in biological fitness represents an advantage if it is desired to limit the spread of resistant populations since the fitness cost is the less likely that resistant individuals will spread in the population. This represents an important factor to consider in designing integrated vector management programs.


Subject(s)
Aedes , Insecticides , Pyrethrins , Zika Virus Infection , Zika Virus , Animals , Female , Insecticide Resistance , Insecticides/pharmacology , Mosquito Vectors/genetics , Nitriles , Pyrethrins/pharmacology
5.
Pestic Biochem Physiol ; 183: 105061, 2022 May.
Article in English | MEDLINE | ID: mdl-35430064

ABSTRACT

Pyrethroid resistance in the malaria vector Anopheles albimanus presents an obstacle to malaria elimination in the Americas. Here, An. albimanus CYP6P5 (the most overexpressed P450 in a Peruvian population) was functionally characterized. Recombinant CYP6P5 metabolized the type II pyrethroids, deltamethrin and α-cypermethrin with comparable affinities (KM of 3.3 µM ± 0.4 and 3.6 µM ± 0.5, respectively), but exhibited a 2.7-fold higher catalytic rate for α-cypermethrin (kcat of 6.02 min-1 ± 0.2) versus deltamethrin (2.68 min-1 ± 0.09). Time-course assays revealed progressive depletion of the above pyrethroids with production of four HPLC-detectable metabolites. Low depletion was obtained with type I pyrethroid, permethrin. Transgenic expression in Drosophila melanogaster demonstrated that overexpression of CYP6P5 alone conferred type II pyrethroid resistance, with only 16% and 55.3% mortalities in flies exposed to 0.25% α-cypermethrin and 0.15% deltamethrin, respectively. Synergist bioassays using P450 inhibitor piperonylbutoxide significantly recovered susceptibility (mortality = 73.6%, p < 0.001) in synergized flies exposed to 4% piperonylbutoxide, plus 0.25% α-cypermethrin, compared to non-synergized flies (mortality = 4.9%). Moderate resistance was also observed towards 4% DDT. These findings established the preeminent role of CYP6P5 in metabolic resistance in An. albimanus, highlighting challenges associated with deployment of insecticide-based control tools in the Americas.


Subject(s)
Anopheles , Insecticides , Malaria , Pyrethrins , Animals , Anopheles/genetics , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Drosophila melanogaster/metabolism , Insecticide Resistance/genetics , Insecticides/metabolism , Insecticides/pharmacology , Mosquito Control , Mosquito Vectors/genetics , Pyrethrins/metabolism , Pyrethrins/pharmacology
6.
Article in English | MEDLINE | ID: mdl-32984076

ABSTRACT

Introduction: Malaria is still an important vector-borne disease in the New World tropics. Despite the recent decline in malaria due to Plasmodium falciparum infection in Africa, a rise in Plasmodium infections has been detected in several low malaria transmission areas in Latin America. One of the main obstacles in the battle against malaria is the lack of innovative tools to assess malaria transmission risk, and the behavioral plasticity of one of the main malaria vectors in Latin America, Anopheles darlingi. Methods: We used human IgG antibodies against mosquito salivary gland proteins as a measure of disease risk. Whole salivary gland antigen (SGA) from Anopheles darlingi mosquitoes was used as antigen in Western blot experiments, in which a ~65 kDa protein was visualized as the main immunogenic band and sent for sequencing by mass spectrometry. Apyrase and peroxidase peptides were designed and used as antigens in an ELISA-based test to measure human IgG antibody responses in people with different clinical presentations of malaria. Results: Liquid chromatography-mass spectrometry revealed 17 proteins contained in the ~65 kDa band, with an apyrase and a peroxidase as the two most abundant proteins. Detection of IgG antibodies against salivary antigens by ELISA revealed a significant higher antibody levels in people with malaria infection when compared to uninfected volunteers using the AnDar_Apy1 and AnDar_Apy2 peptides. We also detected a significant positive correlation between the anti-peptides IgG levels and antibodies against the Plasmodium vivax and P. falciparum antigens PvMSP1 and PfMSP1. Odd ratios suggest that people with higher IgG antibodies against the apyrase peptides were up to five times more likely to have a malaria infection. Conclusion: Antibodies against salivary peptides from An. darlingi salivary gland proteins may be used as biomarkers for malaria risk.


Subject(s)
Anopheles , Plasmodium , Africa , Animals , Antibody Formation , Humans , Mosquito Vectors , Plasmodium falciparum , Salivary Proteins and Peptides
7.
Emerg Infect Dis ; 26(5): 881-890, 2020 05.
Article in English | MEDLINE | ID: mdl-32310079

ABSTRACT

In 2016, four clusters of local mosquitoborne Zika virus transmission were identified in Miami-Dade County, Florida, USA, generating "red zones" (areas into which pregnant women were advised against traveling). The Miami-Dade County Mosquito Control Division initiated intensive control activities, including property inspections, community education, and handheld sprayer applications of larvicides and adulticides. For the first time, the Mosquito Control Division used a combination of areawide ultralow-volume adulticide and low-volume larvicide spraying to effectively control Aedes aegypti mosquitoes, the primary Zika virus vector within the county. The number of mosquitoes rapidly decreased, and Zika virus transmission was interrupted within the red zones immediately after the combination of adulticide and larvicide spraying.


Subject(s)
Aedes , Zika Virus Infection , Zika Virus , Animals , Female , Florida/epidemiology , Humans , Mosquito Control , Mosquito Vectors , Pregnancy , Zika Virus Infection/epidemiology , Zika Virus Infection/prevention & control
8.
Acta Trop ; 197: 105066, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31226251

ABSTRACT

Population displacement and other forced movement patterns following natural disasters, armed conflicts or due to socioeconomic reasons contribute to the global emergence of Aedes-borne viral disease epidemics. In particular, dengue epidemiology is critically affected by situations of displacement and forced movement patterns, particularly within and across borders. In this respect, waves of human movements have been a major driver for the changing epidemiology and outbreaks of the disease on local, regional and global scales. Both emerging dengue autochthonous transmission and outbreaks in countries known to be non-endemic and co-circulation and hyperendemicity with multiple dengue virus serotypes have led to the emergence of severe disease forms such as dengue hemorrhagic fever and dengue shock syndrome. This paper reviews the emergence of dengue outbreaks driven by population displacement and forced movements following natural disasters and conflicts within the context of regional and sub-regional groupings.


Subject(s)
Aedes/virology , Dengue/transmission , Animals , Dengue/epidemiology , Disease Outbreaks , Humans , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...