Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Blood ; 143(12): 1139-1156, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38064663

ABSTRACT

ABSTRACT: The World Health Organization (WHO) classification of hematolymphoid tumors and the International Consensus Classification (ICC) of 2022 introduced major changes to the definition of chronic myelomonocytic leukemia (CMML). To assess its qualitative and quantitative implications for patient care, we started with 3311 established CMML cases (according to WHO 2017 criteria) and included 2130 oligomonocytosis cases fulfilling the new CMML diagnostic criteria. Applying both 2022 classification systems, 356 and 241 of oligomonocytosis cases were newly classified as myelodysplastic (MD)-CMML (WHO and ICC 2022, respectively), most of which were diagnosed as myelodysplastic syndrome (MDS) according to the WHO 2017 classification. Importantly, 1.5 times more oligomonocytosis cases were classified as CMML according to WHO 2022 than based on ICC, because of different diagnostic criteria. Genetic analyses of the newly classified CMML cases showed a distinct mutational profile with strong enrichment of MDS-typical alterations, resulting in a transcriptional subgroup separated from established MD and myeloproliferative CMML. Despite a different cytogenetic, molecular, immunophenotypic, and transcriptional landscape, no differences in overall survival were found between newly classified and established MD-CMML cases. To the best of our knowledge, this study represents the most comprehensive analysis of routine CMML cases to date, both in terms of clinical characterization and transcriptomic analysis, placing newly classified CMML cases on a disease continuum between MDS and previously established CMML.


Subject(s)
Leukemia, Myelomonocytic, Chronic , Myelodysplastic Syndromes , Humans , Consensus , Myelodysplastic Syndromes/diagnosis , Myelodysplastic Syndromes/genetics , Leukemia, Myelomonocytic, Chronic/diagnosis , Leukemia, Myelomonocytic, Chronic/genetics , Leukemia, Myelomonocytic, Chronic/pathology , Leukocytosis , World Health Organization , Prognosis , Organic Chemicals
2.
J Exp Bot ; 74(10): 3033-3046, 2023 05 19.
Article in English | MEDLINE | ID: mdl-36905226

ABSTRACT

Defense responses in plants are based on complex biochemical processes. Systemic acquired resistance (SAR) helps to fight infections by (hemi-)biotrophic pathogens. One important signaling molecule in SAR is pipecolic acid (Pip), accumulation of which is dependent on the aminotransferase ALD1 in Arabidopsis. While exogenous Pip primes defense responses in the monocotyledonous cereal crop barley (Hordeum vulgare), it is currently unclear if endogenous Pip plays a role in disease resistance in monocots. Here, we generated barley ald1 mutants using CRISPR/Cas9, and assessed their capacity to mount SAR. Endogenous Pip levels were reduced after infection of the ald1 mutant, and this altered systemic defense against the fungus Blumeria graminis f. sp. hordei. Furthermore, Hvald1 plants did not emit nonanal, one of the key volatile compounds that are normally emitted by barley plants after the activation of SAR. This resulted in the inability of neighboring plants to perceive and/or respond to airborne cues and prepare for an upcoming infection, although HvALD1 was not required in the receiver plants to mediate the response. Our results highlight the crucial role of endogenous HvALD1 and Pip for SAR, and associate Pip, in particular together with nonanal, with plant-to-plant defense propagation in the monocot crop barley.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Hordeum , Hordeum/genetics , Hordeum/microbiology , Plant Immunity/genetics , Plant Diseases/microbiology
3.
J Neurooncol ; 160(1): 55-65, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36103000

ABSTRACT

OBJECTIVE: The goal of this retrospective study is the evaluation of risk factors for postoperative neurological deficits after petroclival meningioma (PCM) surgery with special focus on standard craniotomies. MATERIALS AND METHODS: One-hundred-fifty-eight patients were included in the study, of which 133 patients suffered from primary and 25 from recurrent PCM. All patients were operated on and evaluated concerning age, tumor size, histology, pre- and postoperative cranial nerve (CN) deficits, morbidity, mortality, and surgical complications. Tumor-specific features-e.g., consistency, surface, arachnoid cleavage, and location-were set in a four-grade classification system that was used to evaluate the risk of CN deficits and tumor resectability. RESULTS: After primary tumor resection, new CN deficits occurred in 27.3% of patients. Preoperative ataxia improved in 25%, whereas 10% developed new ataxia. Gross total resection (GTR) was achieved in 59.4%. The morbidity rate, including hemiparesis, shunt-dependence, postop-hemorrhage, and tracheostomy was 22.6% and the mortality rate was 2.3%. In recurrent PCM surgery, CN deficits occurred in 16%. GTR could be achieved in three cases. Minor complications occurred in 20%. By applying the proposed new classification system to patients operated via standard craniotomies, the best outcome was observed in type I tumor patients (soft tumor consistency, smooth surface, plane arachnoid cleavage, and unilateral localization) with GTR in 78.7% (p < 0.001) and 11.9% new CN deficits (p = 0.006). CONCLUSION: Standard craniotomies as the retrosigmoid or subtemporal/pterional approaches are often used for the resection of PCMs. Whether these approaches are sufficient for GTR-and avoidance of new neurological deficits-depends mainly on the localization and intrinsic tumor-specific features.


Subject(s)
Meningeal Neoplasms , Meningioma , Skull Base Neoplasms , Humans , Meningioma/pathology , Meningeal Neoplasms/pathology , Retrospective Studies , Neurosurgical Procedures/adverse effects , Neurosurgical Procedures/methods , Treatment Outcome , Neoplasm Recurrence, Local/surgery , Neoplasm Recurrence, Local/complications , Skull Base Neoplasms/pathology , Craniotomy/adverse effects , Craniotomy/methods , Ataxia/etiology
5.
Methods Mol Biol ; 2494: 269-289, 2022.
Article in English | MEDLINE | ID: mdl-35467214

ABSTRACT

The immune status of plants can be evaluated by monitoring the propagation of pathogens. Plants defend themselves against pathogen attack through an intricate network of phytohormone-driven innate immune responses. Of these, salicylic acid (SA)-dependent defense responses can be assessed in planta by monitoring the propagation of biotrophic and hemi-biotrophic pathogens. Here, we describe methods to monitor the propagation of the hemi-biotrophic bacterial pathogen Pseudomonas syringae in Arabidopsis thaliana leaves. We describe protocols to (i) propagate the plants to the appropriate growth stage for infection, (ii) prepare the bacterial inoculum, (iii) inoculate plants using spray and infiltration techniques, and (iv) analyze the resulting in planta bacterial titers. The latter bacterial titers serve as a measure of plant susceptibility and negatively correlate with immunity. Based on the methods used with the A. thaliana-P. syringae model pathosystem, we include complementary methods allowing the analysis of innate immunity in the crop plants Solanum lycopersicum (tomato) in interaction with P. syringae and Hordeum vulgare (barley) in interaction with Xanthomonas translucens.


Subject(s)
Arabidopsis , Hordeum , Solanum lycopersicum , Arabidopsis/physiology , Immunity, Innate , Plant Diseases/microbiology , Pseudomonas syringae/physiology
6.
J Exp Bot ; 73(2): 615-630, 2022 01 13.
Article in English | MEDLINE | ID: mdl-34849759

ABSTRACT

Plants activate biochemical responses to combat stress. (Hemi-)biotrophic pathogens are fended off by systemic acquired resistance (SAR), a primed state allowing plants to respond faster and more strongly upon subsequent infection. Here, we show that SAR-like defences in barley (Hordeum vulgare) are propagated between neighbouring plants, which respond with enhanced resistance to the volatile cues from infected senders. The emissions of the sender plants contained 15 volatile organic compounds (VOCs) associated with infection. Two of these, ß-ionone and nonanal, elicited resistance upon plant exposure. Whole-genome transcriptomics analysis confirmed that interplant propagation of defence in barley is established as a form of priming. Although gene expression changes were more pronounced after challenge infection of the receiver plants with Blumeria graminis f. sp. hordei, differential gene expression in response to the volatile cues of the sender plants included an induction of HISTONE DEACETYLASE 2 (HvHDA2) and priming of TETRATRICOPEPTIDE REPEAT-LIKE superfamily protein (HvTPL). Because HvHDA2 and HvTPL transcript accumulation was also enhanced by exposure of barley to ß-ionone and nonanal, our data identify both genes as possible defence/priming markers in barley. Our results suggest that VOCs and plant-plant interactions are relevant for possible crop protection strategies priming defence responses in barley.


Subject(s)
Hordeum , Aldehydes , Hordeum/genetics , Norisoprenoids , Plant Diseases , Plant Proteins/genetics , Plants
7.
New Phytol ; 229(3): 1234-1250, 2021 02.
Article in English | MEDLINE | ID: mdl-32978988

ABSTRACT

Systemic immunity triggered by local plant-microbe interactions is studied as systemic acquired resistance (SAR) or induced systemic resistance (ISR) depending on the site of induction and the lifestyle of the inducing microorganism. SAR is induced by pathogens interacting with leaves, whereas ISR is induced by beneficial microbes interacting with roots. Although salicylic acid (SA) is a central component of SAR, additional signals exclusively promote systemic and not local immunity. These signals cooperate in SAR- and possibly also ISR-associated signaling networks that regulate systemic immunity. The non-SA SAR pathway is driven by pipecolic acid or its presumed bioactive derivative N-hydroxy-pipecolic acid. This pathway further regulates inter-plant defense propagation through volatile organic compounds that are emitted by SAR-induced plants and recognized as defense cues by neighboring plants. Both SAR and ISR influence phytohormone crosstalk towards enhanced defense against pathogens, which at the same time affects the composition of the plant microbiome. This potentially leads to further changes in plant defense, plant-microbe, and plant-plant interactions. Therefore, we propose that such inter-organismic interactions could be combined in potentially highly effective plant protection strategies.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Plant Diseases , Plant Immunity , Salicylic Acid
8.
Nat Commun ; 10(1): 3813, 2019 08 23.
Article in English | MEDLINE | ID: mdl-31444353

ABSTRACT

Salicylic acid (SA)-mediated innate immune responses are activated in plants perceiving volatile monoterpenes. Here, we show that monoterpene-associated responses are propagated in feed-forward loops involving the systemic acquired resistance (SAR) signaling components pipecolic acid, glycerol-3-phosphate, and LEGUME LECTIN-LIKE PROTEIN1 (LLP1). In this cascade, LLP1 forms a key regulatory unit in both within-plant and between-plant propagation of immunity. The data integrate molecular components of SAR into systemic signaling networks that are separate from conventional, SA-associated innate immune mechanisms. These networks are central to plant-to-plant propagation of immunity, potentially raising SAR to the population level. In this process, monoterpenes act as microbe-inducible plant volatiles, which as part of plant-derived volatile blends have the potential to promote the generation of a wave of innate immune signaling within canopies or plant stands. Hence, plant-to-plant propagation of SAR holds significant potential to fortify future durable crop protection strategies following a single volatile trigger.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/immunology , Disease Resistance/immunology , Plant Diseases/immunology , Plant Lectins/metabolism , Volatile Organic Compounds/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Feedback, Physiological , Glycerophosphates/immunology , Glycerophosphates/metabolism , Host-Pathogen Interactions/immunology , Immunity, Innate , Monoterpenes/immunology , Monoterpenes/metabolism , Pipecolic Acids/immunology , Pipecolic Acids/metabolism , Plant Diseases/microbiology , Plant Lectins/genetics , Plants, Genetically Modified , Pseudomonas syringae/immunology , Salicylic Acid/immunology , Salicylic Acid/metabolism , Signal Transduction/immunology , Volatile Organic Compounds/immunology
9.
Mol Plant Microbe Interact ; 32(10): 1303-1313, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31194615

ABSTRACT

Pipecolic acid (Pip) is an essential component of systemic acquired resistance, priming resistance in Arabidopsis thaliana against (hemi)biotrophic pathogens. Here, we studied the potential role of Pip in bacteria-induced systemic immunity in barley. Exudates of barley leaves infected with the systemic immunity-inducing pathogen Pseudomonas syringae pv. japonica induced immune responses in A. thaliana. The same leaf exudates contained elevated Pip levels compared with those of mock-treated barley leaves. Exogenous application of Pip induced resistance in barley against the hemibiotrophic bacterial pathogen Xanthomonas translucens pv. cerealis. Furthermore, both a systemic immunity-inducing infection and exogenous application of Pip enhanced the resistance of barley against the biotrophic powdery mildew pathogen Blumeria graminis f. sp. hordei. In contrast to a systemic immunity-inducing infection, Pip application did not influence lesion formation by a systemically applied inoculum of the necrotrophic fungus Pyrenophora teres. Nitric oxide (NO) levels in barley leaves increased after Pip application. Furthermore, X. translucens pv. cerealis induced the accumulation of superoxide anion radicals and this response was stronger in Pip-pretreated compared with mock-pretreated plants. Thus, the data suggest that Pip induces barley innate immune responses by triggering NO and priming reactive oxygen species accumulation.


Subject(s)
Disease Resistance , Hordeum , Nitric Oxide , Pipecolic Acids , Arabidopsis/microbiology , Disease Resistance/drug effects , Disease Resistance/physiology , Hordeum/metabolism , Hordeum/microbiology , Pipecolic Acids/metabolism , Pipecolic Acids/pharmacology , Plant Diseases/microbiology , Pseudomonas syringae/physiology , Reactive Oxygen Species/metabolism , Xanthomonas/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...