Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters










Publication year range
1.
Plant Cell ; 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37824826

ABSTRACT

Model species continue to underpin groundbreaking plant science research. At the same time, the phylogenetic resolution of the land plant Tree of Life continues to improve. The intersection of these two research paths creates a unique opportunity to further extend the usefulness of model species across larger taxonomic groups. Here we promote the utility of the Arabidopsis thaliana model species, especially the ability to connect its genetic and functional resources, to species across the entire Brassicales order. We focus on the utility of using genomics and phylogenomics to bridge the evolution and diversification of several traits across the Brassicales to the resources in Arabidopsis, thereby extending scope from a model species by establishing a "model clade". These Brassicales-wide traits are discussed in the context of both the model species Arabidopsis thaliana and the family Brassicaceae. We promote the utility of such a "model clade" and make suggestions for building global networks to support future studies in the model order Brassicales.

2.
New Phytol ; 240(5): 1774-1787, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37743552

ABSTRACT

Evolutionary radiations of woody taxa within arid environments were made possible by multiple trait innovations including deep roots and embolism-resistant xylem, but little is known about how these traits have coevolved across the phylogeny of woody plants or how they jointly influence the distribution of species. We synthesized global trait and vegetation plot datasets to examine how rooting depth and xylem vulnerability across 188 woody plant species interact with aridity, precipitation seasonality, and water table depth to influence species occurrence probabilities across all biomes. Xylem resistance to embolism and rooting depth are independent woody plant traits that do not exhibit an interspecific trade-off. Resistant xylem and deep roots increase occurrence probabilities in arid, seasonal climates over deep water tables. Resistant xylem and shallow roots increase occurrence probabilities in arid, nonseasonal climates over deep water tables. Vulnerable xylem and deep roots increase occurrence probabilities in arid, nonseasonal climates over shallow water tables. Lastly, vulnerable xylem and shallow roots increase occurrence probabilities in humid climates. Each combination of trait values optimizes occurrence probabilities in unique environmental conditions. Responses of deeply rooted vegetation may be buffered if evaporative demand changes faster than water table depth under climate change.


Subject(s)
Embolism , Groundwater , Water/physiology , Wood/physiology , Xylem/physiology , Plants , Plant Leaves/physiology , Droughts
3.
Curr Biol ; 33(19): 4052-4068.e6, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37659415

ABSTRACT

The mustard family (Brassicaceae) is a scientifically and economically important family, containing the model plant Arabidopsis thaliana and numerous crop species that feed billions worldwide. Despite its relevance, most phylogenetic trees of the family are incompletely sampled and often contain poorly supported branches. Here, we present the most complete Brassicaceae genus-level family phylogenies to date (Brassicaceae Tree of Life or BrassiToL) based on nuclear (1,081 genes, 319 of the 349 genera; 57 of the 58 tribes) and plastome (60 genes, 265 genera; all tribes) data. We found cytonuclear discordance between the two, which is likely a result of rampant hybridization among closely and more distantly related lineages. To evaluate the impact of such hybridization on the nuclear phylogeny reconstruction, we performed five different gene sampling routines, which increasingly removed putatively paralog genes. Our cleaned subset of 297 genes revealed high support for the tribes, whereas support for the main lineages (supertribes) was moderate. Calibration based on the 20 most clock-like nuclear genes suggests a late Eocene to late Oligocene origin of the family. Finally, our results strongly support a recently published new family classification, dividing the family into two subfamilies (one with five supertribes), together representing 58 tribes. This includes five recently described or re-established tribes, including Arabidopsideae, a monogeneric tribe accommodating Arabidopsis without any close relatives. With a worldwide community of thousands of researchers working on Brassicaceae and its diverse members, our new genus-level family phylogeny will be an indispensable tool for studies on biodiversity and plant biology.


Subject(s)
Arabidopsis , Brassicaceae , Phylogeny , Brassicaceae/genetics , Arabidopsis/genetics , Biodiversity
4.
Am J Bot ; 110(10): e16226, 2023 10.
Article in English | MEDLINE | ID: mdl-37561651

ABSTRACT

PREMISE: Although Boechera (Boechereae, Brassicaceae) has become a plant model system for both ecological genomics and evolutionary biology, all previous phylogenetic studies have had limited success in resolving species relationships within the genus. The recent effective application of sequence data from target enrichment approaches to resolve the evolutionary relationships of several other challenging plant groups prompted us to investigate their usefulness in Boechera and Boechereae. METHODS: To resolve the phylogeny of Boechera and closely related genera, we utilized the Hybpiper pipeline to analyze two combined bait sets: Angiosperms353, with broad applicability across flowering plants; and a Brassicaceae-specific bait set designed for use in the mustard family. Relationships for 101 samples representing 81 currently recognized species were inferred from a total of 1114 low-copy nuclear genes using both supermatrix and species coalescence methods. RESULTS: Our analyses resulted in a well-resolved and highly supported phylogeny of the tribe Boechereae. Boechereae is divided into two major clades, one comprising all western North American species of Boechera, the other encompassing the eight other genera of the tribe. Our understanding of relationships within Boechera is enhanced by the recognition of three core clades that are further subdivided into robust regional species complexes. CONCLUSIONS: This study presents the first broadly sampled, well-resolved phylogeny for most known sexual diploid Boechera. This effort provides the foundation for a new phylogenetically informed taxonomy of Boechera that is crucial for its continued use as a model system.


Subject(s)
Brassicaceae , Phylogeny , Brassicaceae/genetics , Biological Evolution , Genomics
5.
PhytoKeys ; 220: 127-144, 2023.
Article in English | MEDLINE | ID: mdl-37251613

ABSTRACT

Based on recent achievements in phylogenetic studies of the Brassicaceae, a novel infrafamilial classification is proposed that includes major improvements at the subfamilial and supertribal levels. Herein, the family is subdivided into two subfamilies, Aethionemoideae (subfam. nov.) and Brassicoideae. The Brassicoideae, with 57 of the 58 tribes of Brassicaceae, are further partitioned into five supertribes, including the previously recognized Brassicodae and the newly established Arabodae, Camelinodae, Heliophilodae, and Hesperodae. Additional tribus-level contributions include descriptions of the newly recognized Arabidopsideae, Asperuginoideae, Hemilophieae, Schrenkielleae, and resurrection of the Chamireae and Subularieae. Further detailed comments on 17 tribes in need of clarifications are provided.

6.
J Exp Bot ; 74(3): 1004-1021, 2023 02 05.
Article in English | MEDLINE | ID: mdl-36350081

ABSTRACT

The synergy between drought-responsive traits across different organs is crucial in the whole-plant mechanism influencing drought resilience. These organ interactions, however, are poorly understood, limiting our understanding of drought response strategies at the whole-plant level. Therefore, we need more integrative studies, especially on herbaceous species that represent many important food crops but remain underexplored in their drought response. We investigated inflorescence stems and rosette leaves of six Arabidopsis thaliana genotypes with contrasting drought tolerance, and combined anatomical observations with hydraulic measurements and gene expression studies to assess differences in drought response. The soc1ful double mutant was the most drought-tolerant genotype based on its synergistic combination of low stomatal conductance, largest stomatal safety margin, more stable leaf water potential during non-watering, reduced transcript levels of drought stress marker genes, and reduced loss of chlorophyll content in leaves, in combination with stems showing the highest embolism resistance, most pronounced lignification, and thickest intervessel pit membranes. In contrast, the most sensitive Cvi ecotype shows the opposite extreme of the same set of traits. The remaining four genotypes show variations in this drought syndrome. Our results reveal that anatomical, ecophysiological, and molecular adaptations across organs are intertwined, and multiple (differentially combined) strategies can be applied to acquire a certain level of drought tolerance.


Subject(s)
Arabidopsis , Arabidopsis/genetics , Droughts , Plant Leaves/metabolism , Adaptation, Physiological , Acclimatization
7.
Proc Natl Acad Sci U S A ; 119(37): e2208629119, 2022 09 13.
Article in English | MEDLINE | ID: mdl-36067289

ABSTRACT

Insular woodiness (IW)-the evolutionary transition from herbaceousness toward woodiness on islands-is one of the most iconic features of island floras. Since pioneering work by Darwin and Wallace, a number of drivers of IW have been proposed, such as 1) competition for sunlight requiring plants with taller and stronger woody stems and 2) drought favoring woodiness to safeguard root-to-shoot water transport. Alternatively, IW may be the indirect result of increased lifespan related to 3) a favorable aseasonal climate and/or 4) a lack of large native herbivores. However, information on the occurrence of IW is fragmented, hampering tests of these potential drivers. Here, we identify 1,097 insular woody species on 375 islands and infer at least 175 evolutionary transitions on 31 archipelagos, concentrated in six angiosperm families. Structural equation models reveal that the insular woody species richness on oceanic islands correlates with a favorable aseasonal climate, followed by increased drought and island isolation (approximating competition). When continental islands are also included, reduced herbivory pressure by large native mammals, increased drought, and island isolation are most relevant. Our results illustrate different trajectories leading to rampant convergent evolution toward IW and further emphasize archipelagos as natural laboratories of evolution, where similar abiotic or biotic conditions replicated evolution of similar traits.


Subject(s)
Islands , Wood , Biological Evolution , Climate , Oceans and Seas , Plants
8.
New Phytol ; 236(6): 2019-2036, 2022 12.
Article in English | MEDLINE | ID: mdl-36039697

ABSTRACT

Hydraulic failure resulting from drought-induced embolism in the xylem of plants is a key determinant of reduced productivity and mortality. Methods to assess this vulnerability are difficult to achieve at scale, leading to alternative metrics and correlations with more easily measured traits. These efforts have led to the longstanding and pervasive assumed mechanistic link between vessel diameter and vulnerability in angiosperms. However, there are at least two problems with this assumption that requires critical re-evaluation: (1) our current understanding of drought-induced embolism does not provide a mechanistic explanation why increased vessel width should lead to greater vulnerability, and (2) the most recent advancements in nanoscale embolism processes suggest that vessel diameter is not a direct driver. Here, we review data from physiological and comparative wood anatomy studies, highlighting the potential anatomical and physicochemical drivers of embolism formation and spread. We then put forward key knowledge gaps, emphasising what is known, unknown and speculation. A meaningful evaluation of the diameter-vulnerability link will require a better mechanistic understanding of the biophysical processes at the nanoscale level that determine embolism formation and spread, which will in turn lead to more accurate predictions of how water transport in plants is affected by drought.


Subject(s)
Embolism , Magnoliopsida , Droughts , Water/physiology , Xylem/physiology
9.
Plant Methods ; 18(1): 92, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35780674

ABSTRACT

BACKGROUND: Bulk segregant analysis (BSA) can help identify quantitative trait loci (QTLs), but this may result in substantial bycatch of functionally irrelevant genes. RESULTS: Here we develop a Gene Ontology-mediated approach to zoom in on specific genes located inside QTLs identified by BSA as implicated in a continuous trait. We apply this to a novel experimental system: flowering time in the giant woody Jersey kale, which we phenotyped in four bulks of flowering onset. Our inferred QTLs yielded tens of thousands of candidate genes. We reduced this by two orders of magnitude by focusing on genes annotated with terms contained within relevant subgraphs of the Gene Ontology. A pathway enrichment test then led to the circadian rhythm pathway. The genes that enriched this pathway are attested from previous research as regulating flowering time. Within that pathway, the genes CCA1, FT, and TSF were identified as having functionally significant variation compared to Arabidopsis. We validated and confirmed our ontology-mediated results through genome sequencing and homology-based SNP analysis. However, our ontology-mediated approach produced additional genes of putative importance, showing that the approach aids in exploration and discovery. CONCLUSIONS: Our method is potentially applicable to the study of other complex traits and we therefore make our workflows available as open-source code and a reusable Docker container.

10.
Nat Ecol Evol ; 6(1): 36-50, 2022 01.
Article in English | MEDLINE | ID: mdl-34949824

ABSTRACT

Plant functional traits can predict community assembly and ecosystem functioning and are thus widely used in global models of vegetation dynamics and land-climate feedbacks. Still, we lack a global understanding of how land and climate affect plant traits. A previous global analysis of six traits observed two main axes of variation: (1) size variation at the organ and plant level and (2) leaf economics balancing leaf persistence against plant growth potential. The orthogonality of these two axes suggests they are differently influenced by environmental drivers. We find that these axes persist in a global dataset of 17 traits across more than 20,000 species. We find a dominant joint effect of climate and soil on trait variation. Additional independent climate effects are also observed across most traits, whereas independent soil effects are almost exclusively observed for economics traits. Variation in size traits correlates well with a latitudinal gradient related to water or energy limitation. In contrast, variation in economics traits is better explained by interactions of climate with soil fertility. These findings have the potential to improve our understanding of biodiversity patterns and our predictions of climate change impacts on biogeochemical cycles.


Subject(s)
Ecosystem , Soil , Phenotype , Plant Leaves , Plants
11.
Ecol Evol ; 11(17): 12220-12231, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34522372

ABSTRACT

Insular woodiness (IW), referring to the evolutionary transition from herbaceousness toward woodiness on islands, has arisen more than 30 times on the Canary Islands (Atlantic Ocean). One of the IW hypotheses suggests that drought has been a major driver of wood formation, but we do not know in which palaeoclimatic conditions the insular woody lineages originated. Therefore, we provided an updated review on the presence of IW on the Canaries, reviewed the palaeoclimate, and estimated the timing of origin of woodiness of 24 insular woody lineages that represent a large majority of the insular woody species diversity on the Canaries. Our single, broad-scale dating analysis shows that woodiness in 60%-65% of the insular woody lineages studied originated within the last 3.2 Myr, during which Mediterranean seasonality (yearly summer droughts) became established on the Canaries. Consequently, our results are consistent with palaeoclimatic aridification as a potential driver of woodiness in a considerable proportion of the insular woody Canary Island lineages. However, the observed pattern between insular woodiness and palaeodrought during the last couple of million years could potentially have emerged as a result of the typically young age of the native insular flora, characterized by a high turnover.

12.
Appl Plant Sci ; 9(7)2021 Jul.
Article in English | MEDLINE | ID: mdl-34336398

ABSTRACT

PREMISE: Researchers adopting target-enrichment approaches often struggle with the decision of whether to use universal or lineage-specific probe sets. To circumvent this quandary, we investigate the efficacy of a simultaneous enrichment by combining universal probes and lineage-specific probes in a single hybridization reaction, to benefit from the qualities of both probe sets with little added cost or effort. METHODS AND RESULTS: Using 26 Brassicaceae libraries and standard enrichment protocols, we compare results from three independent data sets. A large average fraction of reads mapping to the Angiosperms353 (24-31%) and Brassicaceae (35-59%) targets resulted in a sizable reconstruction of loci for each target set (x̄ ≥ 70%). CONCLUSIONS: High levels of enrichment and locus reconstruction for the two target sets demonstrate that the sampling of genomic regions can be easily extended through the combination of probe sets in single enrichment reactions. We hope that these findings will facilitate the production of expanded data sets that answer individual research questions and simultaneously allow wider applications by the research community as a whole.

13.
Ann Bot ; 128(2): 171-182, 2021 07 30.
Article in English | MEDLINE | ID: mdl-33216143

ABSTRACT

BACKGROUND AND AIMS: The ability to avoid drought-induced embolisms in the xylem is one of the essential traits for plants to survive periods of water shortage. Over the past three decades, hydraulic studies have been focusing on trees, which limits our ability to understand how herbs tolerate drought. Here we investigate the embolism resistance in inflorescence stems of four Arabidopsis thaliana accessions that differ in growth form and drought response. We assess functional traits underlying the variation in embolism resistance amongst the accessions studied using detailed anatomical observations. METHODS: Vulnerability to xylem embolism was evaluated via vulnerability curves using the centrifuge technique and linked with detailed anatomical observations in stems using light microscopy and transmission electron microscopy. KEY RESULTS: The data show significant differences in stem P50, varying 2-fold from -1.58 MPa in the Cape Verde Island accession to -3.07 MPa in the woody soc1 ful double mutant. Out of all the anatomical traits measured, intervessel pit membrane thickness (TPM) best explains the differences in P50, as well as P12 and P88. The association between embolism resistance and TPM can be functionally explained by the air-seeding hypothesis. There is no evidence that the correlation between increased woodiness and increased embolism resistance is directly related to functional aspects. However, we found that increased woodiness is strongly linked to other lignification characters, explaining why mechanical stem reinforcement is indirectly related to increased embolism resistance. CONCLUSIONS: The woodier or more lignified accessions are more resistant to embolism than the herbaceous accessions, confirming the link between increased stem lignification and increased embolism resistance, as also observed in other lineages. Intervessel pit membrane thickness and, to a lesser extent, theoretical vessel implosion resistance and vessel wall thickness are the missing functional links between stem lignification and embolism resistance.


Subject(s)
Arabidopsis , Embolism , Arabidopsis/genetics , Droughts , Plant Stems , Water , Xylem
14.
Plant Physiol ; 181(3): 1163-1174, 2019 11.
Article in English | MEDLINE | ID: mdl-31455632

ABSTRACT

Vascular pathogens cause disease in a large spectrum of perennial plants, with leaf scorch being one of the most conspicuous symptoms. Esca in grapevine (Vitis vinifera) is a vascular disease with huge negative effects on grape yield and the wine industry. One prominent hypothesis suggests that vascular disease leaf scorch is caused by fungal pathogen-derived elicitors and toxins. Another hypothesis suggests that leaf scorch is caused by hydraulic failure due to air embolism, the pathogen itself, and/or plant-derived tyloses and gels. In this study, we transplanted mature, naturally infected esca symptomatic vines from the field into pots, allowing us to explore xylem integrity in leaves (i.e. leaf midveins and petioles) using synchrotron-based in vivo x-ray microcomputed tomography and light microscopy. Our results demonstrated that symptomatic leaves are not associated with air embolism. In contrast, symptomatic leaves presented significantly more nonfunctional vessels resulting from the presence of nongaseous embolisms (i.e. tyloses and gels) than control leaves, but there was no significant correlation with disease severity. Using quantitative PCR, we determined that two vascular pathogen species associated with esca necrosis in the trunk were not found in leaves where occlusions were observed. Together, these results demonstrate that symptom development is associated with the disruption of vessel integrity and suggest that symptoms are elicited at a distance from the trunk where fungal infections occur. These findings open new perspectives on esca symptom expression where the hydraulic failure and elicitor/toxin hypotheses are not necessarily mutually exclusive.


Subject(s)
Plant Leaves/metabolism , Vitis/metabolism , X-Ray Microtomography , Xylem/metabolism
15.
J Exp Bot ; 70(12): 3227-3240, 2019 06 28.
Article in English | MEDLINE | ID: mdl-30921455

ABSTRACT

The evolution of xylem vessels from tracheids is put forward as a key innovation that boosted hydraulic conductivity and photosynthetic capacities in angiosperms. Yet, the role of xylem anatomy and interconduit pits in hydraulic performance across vesselless and vessel-bearing angiosperms is incompletely known, and there is a lack of functional comparisons of ultrastructural pits between species with different conduit types. We assessed xylem hydraulic conductivity and vulnerability to drought-induced embolism in 12 rain forest species from New Caledonia, including five vesselless species, and seven vessel-bearing species with scalariform perforation plates. We measured xylem conduit traits, along with ultrastructural features of the interconduit pits, to assess the relationships between conduit traits and hydraulic efficiency and safety. In spite of major differences in conduit diameter, conduit density, and the presence/absence of perforation plates, the species studied showed similar hydraulic conductivity and vulnerability to drought-induced embolism, indicating functional similarity between both types of conduits. Interconduit pit membrane thickness (Tm) was the only measured anatomical feature that showed a relationship to significant vulnerability to embolism. Our results suggest that the incidence of drought in rain forest ecosystems can have similar effects on species bearing water-conducting cells with different morphologies.


Subject(s)
Biological Evolution , Biological Transport , Magnoliopsida/physiology , Water/metabolism , Xylem/physiology , Magnoliopsida/anatomy & histology , New Caledonia , Xylem/anatomy & histology
16.
Physiol Plant ; 167(4): 661-675, 2019 Dec.
Article in English | MEDLINE | ID: mdl-30637766

ABSTRACT

Xylem vulnerability to cavitation and hydraulic efficiency are directly linked to fine-scale bordered pit features in water-conducting cells of vascular plants. However, it is unclear how pit characteristics influence water transport and carbon economy in tropical species. The primary aim of this study was to evaluate functional implications of changes in pit characteristics for water relations and photosynthetic traits in tropical Ficus species with different growth forms (i.e. hemiepiphytic and non-hemiepiphytic) grown under common conditions. Intervessel pit characteristics were measured using scanning electron microscopy in five hemiepiphytic and five non-hemiepiphytic Ficus species to determine whether these traits were related to hydraulics, leaf photosynthesis, stomatal conductance and wood density. Ficus species varied greatly in intervessel pit structure, hydraulic conductivity and leaf physiology, and clear differences were observed between the two growth forms. The area and diameter of pit aperture were negatively correlated with sapwood-specific hydraulic conductivity, mass-based net assimilation rate, stomatal conductance (gs ), intercellular CO2 concentration (Ci ) and the petiole vessel lumen diameters (Dv ), but positively correlated with wood density. Pit morphology was only negatively correlated with sapwood- and leaf-specific hydraulic conductivity and Dv . Pit density was positively correlated with gs , Ci and Dv , but negatively with intrinsic leaf water-use efficiency. Pit and pit aperture shape were not significantly correlated with any of the physiological traits. These findings indicate a significant role of pit characteristics in xylem water transport, carbon assimilation and ecophysiological adaptation of Ficus species in tropical rain forests.


Subject(s)
Ficus/physiology , Photosynthesis , Xylem/physiology , Plant Leaves , Plant Stomata/physiology , Water
17.
New Phytol ; 221(4): 1802-1813, 2019 03.
Article in English | MEDLINE | ID: mdl-30312484

ABSTRACT

Shared ancestry among species and correlation between vessel diameter and plant height can obscure the mechanisms linking vessel diameter to current climate distributions of angiosperms. Because wood is complex, various traits may interact to influence vessel function. Specifically, pit vesturing (lignified cell wall protuberances associated with bordered pits) and perforation plate morphology could alter the relationships between vessel diameter, climate and plant height. Using phylogenetically informed analyses, we tested for associations between vessel diameter, climate and maximum plant height across angiosperm species with different pit vesturing (presence/absence) and perforation plate morphology (simple/scalariform and quantitative variation). We show significantly larger changes in vessel diameter and maximum plant height across climates for species with vestures and simple perforation plates, compared to nonvestured species and those with scalariform plates. We also found a significantly greater increase in height for a given increase in vessel diameter with lower percentage of scalariform plates. Our study provides novel insights into the evolution of angiosperm xylem by showing that vessel pit vesturing and perforation plate morphologies can modify relationships among xylem vessels, climate and height. Our findings highlight the complexity of xylem adaptations to climate, substantiating an integrative view of xylem function in the study of wood evolution.


Subject(s)
Cell Wall/physiology , Magnoliopsida/anatomy & histology , Magnoliopsida/physiology , Adaptation, Physiological , Climate , Magnoliopsida/cytology , Phylogeny , Plant Cells , Wood/anatomy & histology , Xylem
18.
Ann Bot ; 124(1): 1-14, 2019 08 02.
Article in English | MEDLINE | ID: mdl-30590483

ABSTRACT

BACKGROUND AND AIMS: Plant survival under extreme drought events has been associated with xylem vulnerability to embolism (the disruption of water transport due to air bubbles in conduits). Despite the ecological and economic importance of herbaceous species, studies focusing on hydraulic failure in herbs remain scarce. Here, we assess the vulnerability to embolism and anatomical adaptations in stems of seven herbaceous Brassicaceae species occurring in different vegetation zones of the island of Tenerife, Canary Islands, and merged them with a similar hydraulic-anatomical data set for herbaceous Asteraceae from Tenerife. METHODS: Measurements of vulnerability to xylem embolism using the in situ flow centrifuge technique along with light and transmission electron microscope observations were performed in stems of the herbaceous species. We also assessed the link between embolism resistance vs. mean annual precipitation and anatomical stem characters. KEY RESULTS: The herbaceous species show a 2-fold variation in stem P50 from -2.1 MPa to -4.9 MPa. Within Hirschfeldia incana and Sisymbrium orientale, there is also a significant stem P50 difference between populations growing in contrasting environments. Variation in stem P50 is mainly explained by mean annual precipitation as well as by the variation in the degree of woodiness (calculated as the proportion of lignified area per total stem area) and to a lesser extent by the thickness of intervessel pit membranes. Moreover, mean annual precipitation explains the total variance in embolism resistance and stem anatomical traits. CONCLUSIONS: The degree of woodiness and thickness of intervessel pit membranes are good predictors of embolism resistance in the herbaceous Brassicaceae and Asteraceae species studied. Differences in mean annual precipitation across the sampling sites affect embolism resistance and stem anatomical characters, both being important characters determining survival and distribution of the herbaceous eudicots.


Subject(s)
Asteraceae , Brassicaceae , Embolism , Humans , Islands , Plant Stems , Spain , Water , Xylem
19.
Plant Cell Environ ; 41(12): 2718-2730, 2018 12.
Article in English | MEDLINE | ID: mdl-30071137

ABSTRACT

Plant xylem response to drought is routinely represented by a vulnerability curve (VC). Despite the significance of VCs, the connection between anatomy and tissue-level hydraulic response to drought remains a subject of inquiry. We present a numerical model of water flow in flowering plant xylem that combines current knowledge on diffuse-porous anatomy and embolism spread to explore this connection. The model produces xylem networks and uses different parameterizations of intervessel connection vulnerability to embolism spread: the Young-Laplace equation and pit membrane stretching. Its purpose is upscaling processes occurring on the microscopic length scales, such as embolism propagation through pit membranes, to obtain tissue-scale hydraulics. The terminal branch VC of Acer glabrum was successfully reproduced relying only on real observations of xylem tissue anatomy. A sensitivity analysis shows that hydraulic performance and VC shape and location along the water tension axis are heavily dependent on anatomy. The main result is that the linkage between pit-scale and vessel-scale anatomical characters, along with xylem network topology, affects VCs significantly. This work underscores the importance of stepping up research related to the three-dimensional network structure of xylem tissues. The proposed model's versatility makes it an important tool to explore similar future questions.


Subject(s)
Wood/anatomy & histology , Xylem/physiology , Acer/anatomy & histology , Acer/physiology , Dehydration , Models, Biological , Trees/anatomy & histology , Trees/physiology , Water/metabolism
20.
Ann Bot ; 122(2): 325-336, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29788033

ABSTRACT

Background and Aims: More intense droughts under climate change threaten species resilience. Hydraulic strategies determine drought survival in woody plants but have been hardly studied in herbaceous species. We explored the intraspecific variability of hydraulic and morphological traits as indicators of dehydration tolerance in a perennial grass, cocksfoot (Dactylis glomerata), which has a large biogeographical distribution in Europe. Methods: Twelve populations of cocksfoot originating from Mediterranean, Temperate and Northern European areas were grown in a controlled environment in pots. Dehydration tolerance, leaf and stem anatomical traits and xylem pressure associated with 88 or 50 % loss of xylem conductance (P88, P50) were measured. Key Results: Across the 12 populations of cocksfoot, P50 ranged from -3.06 to - 6.36 MPa, while P88 ranged from -5.06 to -11.6 MPa. This large intraspecific variability of embolism thresholds corresponded with the biogeographical distribution and some key traits of the populations. In particular, P88 was correlated with dehydration tolerance (r = -0.79). The dehydration-sensitive Temperate populations exhibited the highest P88 (-6.1 MPa). The most dehydration-tolerant Mediterranean populations had the greatest leaf dry matter content and leaf fracture toughness, and the lowest P88 (-10.4 MPa). The Northern populations displayed intermediate trait values, potentially attributable to frost resistance. The thickness of metaxylem vessel walls in stems was highly correlated with P50 (r = -0.92), but no trade-off with stem lignification was observed. The relevance of the linkage between hydraulic and stomatal traits is discussed for drought survival in perennial grasses. Conclusions: Compared with woody species, the large intraspecific variability in dehydration tolerance and embolism resistance within cocksfoot has consequences for its sensitivity to climate change. To better understand adaptive strategies of herbaceous species to increasing drought and frost requires further exploration of the role of hydraulic and mechanical traits using a larger inter- and intraspecific range of species.


Subject(s)
Adaptation, Physiological , Dactylis/physiology , Plant Transpiration/physiology , Climate Change , Dactylis/anatomy & histology , Dehydration , Droughts , Plant Leaves/anatomy & histology , Plant Leaves/physiology , Plant Stems/anatomy & histology , Plant Stems/physiology , Plant Stomata/anatomy & histology , Plant Stomata/physiology , Species Specificity , Water/physiology , Xylem/anatomy & histology , Xylem/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...