Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
2.
Pharmaceutics ; 15(10)2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37896225

ABSTRACT

Castanea sativa Mill. (Cs), a plant traditionally employed in nutrition and to treat various respiratory and gastrointestinal infections, possesses cancer chemopreventive characteristics. In particular, Cs bark extract previously demonstrated antiproliferative and pro-apoptotic activities against a leukemic lymphoblastic cell line. Starting from this evidence, the aim of this paper was to investigate the possibility to affect also the earlier phases of the carcinogenic process by evaluating Cs bark extract's antimutagenic properties, in particular using the "In Vitro Mammalian Cell Micronucleus Test" on TK6 cells performed by flow cytometry. For this purpose, since an ideal chemopreventive agent should be virtually nontoxic, the first step was to exclude the extract's genotoxicity. Afterwards, the antimutagenic effect of the extract was evaluated against two known mutagens, the clastogen mitomycin C (MMC) and the aneugen vinblastine (VINB). Our results indicate that Cs bark extract protected cells from MMC-induced damage (micronuclei frequency fold increase reduction from 2.9 to 1.8) but not from VINB. Moreover, we demonstrated that Cs bark extract was a strong antioxidant and significantly reduced MMC-induced ROS levels by over 2 fold. Overall, our research supports the assumption that Cs bark extract can counteract MMC mutagenicity by possibly scavenging ROS production.

3.
Int J Mol Sci ; 24(13)2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37445675

ABSTRACT

MTTA, also known as mephtetramine, is a stimulant novel psychoactive substance characterized by a simil-cathinonic structure. To date, little has been studied on its pharmaco-toxicological profile, and its genotoxic potential has never been assessed. In order to fill this gap, the aim of the present work was to evaluate its genotoxicity on TK6 cells in terms of its ability to induce structural and numerical chromosomal aberrations by means of a cytofluorimetric protocol of the "In Vitro Mammalian Cell Micronucleus (MN) test". To consider the in vitro effects of both the parental compound and the related metabolites, TK6 cells were treated with MTTA in the absence or presence of an exogenous metabolic activation system (S9 mix) for a short-term time (3 h) followed by a recovery period (23 h). No statistically significant increase in the MNi frequency was detected. Specifically, in the presence of S9 mix, only a slight increasing trend was observable at all tested concentrations, whereas, without S9 mix, at 75 µM, almost a doubling of the negative control was reached. For the purposes of comprehensive evaluation, a long-term treatment (26 h) was also included. In this case, a statistically significant enhancement in the MNi frequency was observed at 50 µM.


Subject(s)
DNA Damage , Mutagens , Animals , Micronucleus Tests/methods , Mutagens/toxicity , Mutagens/metabolism , Central Nervous System Agents , Mutagenicity Tests/methods , Mammals/metabolism
4.
Pharmaceutics ; 15(2)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36839972

ABSTRACT

Neuroblastoma cells highly express the disialoganglioside GD2, a tumor-associated carbohydrate antigen, which is also expressed in neurons, skin melanocytes, and peripheral nerve fibers. Immunotherapy with monoclonal anti-GD2 antibodies has a proven efficacy in clinical trials and is included in the standard treatment for children with high-risk neuroblastoma. However, the strong neuro-toxicity associated with anti-GD2 antibodies administration has hindered, until now, the possibility for dose-escalation and protracted use, thus restraining their therapeutic potential. Strategies to increase the efficacy of anti-GD2 antibodies are actively sought, with the aim to enable chronic treatments that could eradicate minimal residual disease and subsequent relapses, often occurring after treatment. Here, we report that Nanofenretinide and Nanospermidine improved the expression of GD2 in neuroblastoma cells (CHP-134) and provided different effects in combination with the anti-GD2 antibody naxitamab. In particular, Nanofenretinide significantly increased the cytotoxic effect of naxitamab while Nanospermidine inhibited cell motility at extents proportional to naxitamab concentration. In neuroblastoma cells characterized by a low and heterogeneous basal expression of GD2, such as SH-SY5Y, which may represent the cell heterogeneity in tumors after chemotherapy, both Nanofenretinide and Nanospermidine increased GD2 expression in approximately 50% of cells, thus shifting the tumor population towards improved sensitivity to anti-GD2 antibodies.

5.
Pharmaceuticals (Basel) ; 15(12)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36558942

ABSTRACT

Little is known about the pharmacological activity of Ammodaucus leucotrichus Coss. & Dur., a small annual species that grows in the Saharan and sub-Saharan countries. In the present study, we investigated whether the standardized ethanolic extract of A. leucotrichus fruits and R-perillaldehyde, a monoterpenoid isolated from A. leucotrichus fruits, are able to affect different processes involved in different phases of cancer development. In particular, we explored their genoprotective, proapoptotic, antiproliferative, and cytodifferentiating potential on different human cell models. We analyzed the genoprotective and proapoptotic activity on human lymphoblast cells (TK6) using the micronucleus test, and the cytodifferentiation effects on human promyelocytic cells (HL60) through the evaluation of different markers of differentiation forward granulocytes or monocytes. The results showed that the extract and perillaldehyde were able to induce apoptosis and protect from clastogen-induced DNA damage. To our best knowledge, this is the first report on the ability of A. leucotrichus and perillaldehyde to induce apoptosis and protect DNA from the toxicity of different compounds. Data reported in this work are the starting point for their pharmacological use. Going forward, efforts to determine their effects on other events associated with cancer development, such as angiogenesis and metastasization, will provide important information and improve our understanding of their potential in cancer therapy.

6.
Int J Mol Sci ; 23(22)2022 Nov 19.
Article in English | MEDLINE | ID: mdl-36430883

ABSTRACT

Three fentanyl analogues Acrylfentanyl, Ocfentanyl and Furanylfentanyl are potent, rapid-acting synthetic analgesics that recently appeared on the illicit market of new psychoactive substances (NPS) under the class of new synthetic opioids (NSO). Pharmacotoxicological data on these three non-pharmaceutical fentanyl analogues are limited and studies on their genotoxicity are not yet available. Therefore, the aim of the present study was to investigate this property. The ability to induce structural and numerical chromosomal aberrations in human lymphoblastoid TK6 cells was evaluated by employing the flow cytometric protocol of the in vitro mammalian cell micronucleus test. Our study demonstrated the non-genotoxicity of Fentanyl, i.e., the pharmaceutical progenitor of the class, while its illicit non-pharmaceutical analogues were found to be genotoxic. In particular, Acrylfentanyl led to a statistically significant increase in the MNi frequency at the highest concentration tested (75 µM), while Ocfentanyl and Furanylfentnyl each did so at both concentrations tested (150, 200 µM and 25, 50 µM, respectively). The study ended by investigating reactive oxygen species (ROS) induction as a possible mechanism linked to the proved genotoxic effect. The results showed a non-statistically significant increase in ROS levels in the cultures treated with all molecules under study. Overall, the proved genotoxicity raises concern about the possibility of serious long-term consequences.


Subject(s)
DNA Damage , Fentanyl , Humans , Reactive Oxygen Species , Fentanyl/toxicity
7.
Biomolecules ; 12(10)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36291694

ABSTRACT

Autophagy is a fundamental catabolic process of cellular survival. The role of autophagy in cancer is highly complex: in the early stages of neoplastic transformation, it can act as a tumor suppressor avoiding the accumulation of proteins, damaged organelles, and reactive oxygen species (ROS), while during the advanced stages of cancer, autophagy is exploited by cancer cells to survive under starvation. 6-(Methylsulfonyl) hexyl isothiocyanate (6-MITC) is the most interesting compound in the Wasabia Japonica rizhome. Recently, we proved its ability to induce cytotoxic, cytostatic, and cell differentiation effects on leukemic cell lines and its antimutagenic activity on TK6 cells. In the current study, to further define its chemopreventive profile, Jurkat and HL-60 cells were treated with 6-MITC for 24 h. The modulation of the autophagic process and the involvement of ROS levels as a possible trigger mechanisms were analyzed by flow cytometry. We found that 6-MITC induced autophagy in Jurkat and HL-60 cells at the highest concentration tested and increased ROS intracellular levels in a dose-dependent manner. Our results implement available data to support 6-MITC as an attractive potential chemopreventive agent.


Subject(s)
Cytostatic Agents , Leukemia , Humans , Reactive Oxygen Species , Cytostatic Agents/pharmacology , Isothiocyanates/pharmacology , Leukemia/drug therapy , Autophagy , HL-60 Cells , Apoptosis , Cell Line, Tumor
8.
Int J Mol Sci ; 23(10)2022 May 23.
Article in English | MEDLINE | ID: mdl-35628658

ABSTRACT

The novel psychoactive substance (NPS) 4-Methyl-5-(4-methylphenyl)-4,5-dihydroxazol-2-amine (4,4'-DMAR) shows psychostimulant activity. Data on the acute toxicity of 4,4'-DMAR are becoming increasingly available, yet the long-term effects are still almost unknown. In particular, no data on genotoxicity are available. Therefore, the aim of the present study was to evaluate its genotoxic potential using the "In Vitro Mammalian Cell Micronucleus Test" (MNvit) on (±)cis-4,4'-DMAR and (±)trans-4,4'-DMAR and their associations. The analyses were conducted in vitro on human TK6 cells. To select suitable concentrations for MNvit, we preliminarily evaluated cytotoxicity and apoptosis. All endpoints were analysed by flow cytometry. The results reveal the two racemates' opposite behaviours: (±)cis-4,4'-DMAR shows a statistically significant increase in micronuclei (MNi) frequency that (±)trans-4,4'-DMAR is completely incapable of. This contrast confirms the well-known possibility of observing opposite biological effects of the cis- and trans- isomers of a compound, and it highlights the importance of testing single NPSs that show even small differences in structure or conformation. The genotoxic capacity demonstrated stresses an additional alarming toxicological concern related to this NPS. Moreover, the co-treatments indicate that consuming both racemates will magnify the genotoxic effect, an aspect to consider given the unpredictability of illicit drug composition.


Subject(s)
Central Nervous System Stimulants , Illicit Drugs , Animals , Central Nervous System Stimulants/pharmacology , Humans , Illicit Drugs/pharmacology , Isomerism , Mammals , Oxazoles/pharmacology
9.
Toxics ; 10(3)2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35324767

ABSTRACT

A genotoxicological study was carried out on a substance-based medical device (SMD) containing anthraquinones in order to evaluate its potential mutagenic effect. The "In Vitro Mammalian Cell Micronucleus Test" was performed on human TK6 cells by flow cytometry. Cultures were treated with concentrations of SMD tested in the range of 0-2 mg/mL for short treatment time (3 h) both in the absence and presence of an exogenous metabolic activation system, followed by a recovery period in fresh medium (23 h) and for extended treatment time (26 h) without an exogenous metabolic activation system. At the end of both treatment times, cytotoxicity, cytostasis, apoptosis and micronuclei (MNi) frequency were analysed in treated cultures and then compared with those measured in concurrent negative control cultures. The SMD did not induce a statistically significant increase MNi frequency under any of experimental conditions tested. The negative outcome shows that the SMD is non-mutagenic in terms of its ability to induce chromosomal aberrations both in the absence and presence of an exogenous metabolic activation system. The study ended by analyzing intracellular ROS levels to exclude the pro-oxidant ability, typically linked to DNA damage. On the contrary, our results demonstrated the ability the SMD to counteract oxidative stress.

10.
Int J Mol Sci ; 22(12)2021 Jun 12.
Article in English | MEDLINE | ID: mdl-34204826

ABSTRACT

Mexedrone, α-PVP and α-PHP are synthetic cathinones. They can be considered amphetamine-like substances with a stimulating effect. Actually, studies showing their impact on DNA are totally absent. Therefore, in order to fill this gap, aim of the present work was to evaluate their mutagenicity on TK6 cells. On the basis of cytotoxicity and cytostasis results, we selected the concentrations (35-100 µM) to be used in the further analysis. We used the micronucleus (MN) as indicator of genetic damage and analyzed the MNi frequency fold increase by flow cytometry. Mexedrone demonstrated its mutagenic potential contrary to the other two compounds; we then proceeded by repeating the analyzes in the presence of extrinsic metabolic activation in order to check if it was possible to totally exclude the mutagenic capacity for α-PVP and α-PHP. The results demonstrated instead the mutagenicity of their metabolites. We then evaluated reactive oxygen species (ROS) induction as a possible mechanism at the basis of the highlighted effects but the results did not show a statistically significant increase in ROS levels for any of the tested substances. Anyway, our outcomes emphasize the importance of mutagenicity evaluation for a complete assessment of the risk associated with synthetic cathinones exposure.


Subject(s)
Alkaloids/toxicity , Methamphetamine/analogs & derivatives , Mutagens/toxicity , Pentanones/toxicity , Pyrrolidines/toxicity , Apoptosis/drug effects , Cell Death/drug effects , Cell Line , Cell Survival/drug effects , Humans , Methamphetamine/toxicity , Micronucleus, Germline/drug effects , Micronucleus, Germline/metabolism , Reactive Oxygen Species/metabolism
11.
Int J Mol Sci ; 21(24)2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33348640

ABSTRACT

Psychedelic and stimulating phenethylamines belong to the family of new psychoactive substances (NPS). The acute toxicity framework has begun to be investigated, while studies showing genotoxic potential are very limited or not available. Therefore, in order to fill this gap, the aim of the present work was to evaluate the genotoxicity by treating TK6 cells with 2C-H, 2C-I, 2C-B, 25B-NBOMe, and the popular 3,4-Methylenedioxymethylamphetamine (MDMA). On the basis of cytotoxicity and cytostasis results, we selected the concentrations (6.25-35 µM) to be used in genotoxicity analysis. We used the micronucleus (MN) as indicator of genetic damage and analyzed the MNi frequency fold increase by an automated flow cytometric protocol. All substances, except MDMA, resulted genotoxic; therefore, we evaluated reactive oxygen species (ROS) induction as a possible mechanism at the basis of the demonstrated genotoxicity. The obtained results showed a statistically significant increase in ROS levels for all genotoxic phenethylamines confirming this hypothesis. Our results highlight the importance of genotoxicity evaluation for a complete assessment of the risk associated also with NPS exposure. Indeed, the subjects who do not have hazardous behaviors or require hospitalization by using active but still "safe" doses could run into genotoxicity and in the well-known long-term effects associated.


Subject(s)
Anisoles/pharmacology , Dimethoxyphenylethylamine/analogs & derivatives , Genes/drug effects , N-Methyl-3,4-methylenedioxyamphetamine/pharmacology , Phenethylamines/pharmacology , Psychotropic Drugs/pharmacology , Apoptosis/drug effects , Cell Line , Cell Survival/drug effects , Dimethoxyphenylethylamine/pharmacology , Flow Cytometry/methods , Hallucinogens/pharmacology , Humans , Micronuclei, Chromosome-Defective/chemically induced , Micronucleus Tests/methods , Reactive Oxygen Species/analysis , Reactive Oxygen Species/metabolism
12.
Front Pharmacol ; 11: 1242, 2020.
Article in English | MEDLINE | ID: mdl-32973500

ABSTRACT

6-(methylsulfinyl) hexyl isothiocyanate (6-MITC), is the main bioactive compound present in Wasabia japonica rhizome. Several scientific studies have shown that 6-MITC possesses interesting antimicrobial, anti-inflammatory, antiplatelet and antioxidant properties which therefore suggested us it could have an interesting chemopreventive potential. In a recent publication, we demonstrated, in two different leukemia cell lines, its ability to modulate several mechanisms supporting its antitumor activity. For this reason, we thought useful to continue the research, by investigating the potential antimutagenic activity of 6-MITC and thus better define its profile as a possible chemopreventive agent. 6-MITC antimutagenic effect against two known mutagenic agents: the clastogen Mitomycin C (MMC) and the aneuplodogen Vinblastine (VINB), was analyzed, in terms of micronuclei frequency decrease, after short- and long- time treatment on TK6 human cells, using a new automated protocol of the "In Vitro Mammalian Cell Micronucleous Test" by flow cytometry. The results showed a different behavior of the isothiocyante. In particular, 6-MITC was unable to counteract the MMC genotoxicity, but when it was associated with VINB a statistically significant decrease in the micronuclei frequency was registered. Overall, the results obtained suggest a potential antimutagenic activity of 6-MITC, in particular against the aneuploidogen agents. This ability, to inhibit or counteract the mutations at the cellular level has a great therapeutic value and it represents a mechanism through a chemopreventive agent can express its activity.

13.
Int J Mol Sci ; 21(3)2020 Feb 09.
Article in English | MEDLINE | ID: mdl-32050487

ABSTRACT

Novel Psychoactive Substances (NPS) include several classes of substances such as synthetic cannabinoids (SCBs), an emerging alternative to marijuana, easily purchasable on internet. SCBs are more dangerous than Δ9-Tetrahydrocannabinol as a consequence of their stronger affinities for the CB1 and CB2 receptors, which may result in longer duration of distinct effects, greater potency, and toxicity. The information on SCBs cytotoxicity, genotoxicity, mutagenicity, and long-term effects is scarce. This fact suggests the urgent need to increase available data and to investigate if some SCBs have an impact on the stability of genetic material. Therefore, the aim of the present study was the evaluation of the mutagenic effect of different SCBs belonging to indole- and indazole-structures. The analyzes were conducted in vitro on human TK6 cells and mutagenicity were measured as micronucleus fold increase by flow cytometry. Our results have highlighted, for the first time, the mutagenic capacity of four SCBs, in particular in terms of chromosomal damage induction. We underline the serious potential toxicity of SCBs that suggests the need to proceed with the studies of other different synthetic compounds. Moreover, we identified a method that allows a rapid but effective screening of NPS placed on the market increasingly faster.


Subject(s)
Cannabinoids/toxicity , Mutagens/toxicity , Psychotropic Drugs/toxicity , Cannabinoids/chemistry , Cell Line , Flow Cytometry , Humans , Micronucleus Tests , Mutagenicity Tests , Mutagens/chemistry , Psychotropic Drugs/chemistry
14.
Geroscience ; 42(3): 867-879, 2020 06.
Article in English | MEDLINE | ID: mdl-31098949

ABSTRACT

Cellular senescence is a fundamental process that may play positive or detrimental roles for the organism. It is involved in tissue development and in tumor prevention although during aging is becoming a detrimental process contributing to the decline of tissue functions. In previous investigations, we have uncovered a better capacity to detect DNA damage in cells from long-lived mammals. Here, we report that cultured cells derived from long-lived species have a higher propensity to undergo senescence when challenged with DNA damage than cells derived from short-lived species. Using a panel of cells derived from six mammals, which range in lifespan from 3-4 years up to 120 years, we examined cell cycle response, induction of apoptosis and of cellular senescence. All species exhibited a cell cycle arrest while induction of apoptosis was variable. However, a significant positive correlation was found between the relative percent of cells, within a population which entered senescence following damage, and the lifespan of the species. We suggest that cellular senescence may have a positive role during development allowing it to contribute to the evolution of longevity.


Subject(s)
Cellular Senescence , Longevity , Aging , Animals , DNA Damage , beta-Galactosidase
15.
Oxid Med Cell Longev ; 2018: 4125297, 2018.
Article in English | MEDLINE | ID: mdl-30581529

ABSTRACT

Sulforaphane, a biologically active isothiocyanate compound extracted from cruciferous vegetables, has been shown to exert cytotoxic effects on many human cancer cells, including leukemia. However, the exact molecular mechanisms behind the action of sulforaphane in hematological malignancies are still unclear. Like other cancer cells, leukemia cells produce high level of reactive oxygen species; in particular, hydrogen peroxide derived from Nox family is involved in various redox signal transduction pathways, promoting cell proliferation and survival. Recent evidence show that many tumour cell types express elevated level of aquaporin isoforms, and we previously demonstrated that aquaporin-8 acts as H2O2 transport facilitator across the plasma membrane of B1647 cells, a model of acute myeloid human leukemia. Thus, the control of AQP8-mediated H2O2 transport could be a novel strategy to regulate cell signalling and survival. To this purpose, we evaluated whether sulforaphane could somehow affect aquaporin-8-mediated H2O2 transport and/or Nox-mediated H2O2 production in B1647 cell line. Results indicated that sulforaphane inhibited both aquaporin-8 and Nox2 expression, thus decreasing B1647 cells viability. Moreover, the data obtained by coimmunoprecipitation technique demonstrated that these two proteins are linked to each other; thus, sulforaphane has an important role in modulating the downstream events triggered by the axis Nox2-aquaporin-8. Cell treatment with sulforaphane also reduced the expression of peroxiredoxin-1, which is increased in almost all acute myeloid leukemia subtypes. Interestingly, sulforaphane concentrations able to trigger these effects are achievable by dietary intake of cruciferous vegetables, confirming the importance of the beneficial effect of a diet rich in bioactive compounds.


Subject(s)
Aquaporins/metabolism , Hydrogen Peroxide/metabolism , Isothiocyanates/pharmacology , Cell Line, Tumor , Cell Membrane/metabolism , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Leukemia/metabolism , NADPH Oxidase 2/metabolism , Peroxiredoxins , Signal Transduction/drug effects , Sulfoxides
16.
BMC Complement Altern Med ; 18(1): 300, 2018 Nov 12.
Article in English | MEDLINE | ID: mdl-30419892

ABSTRACT

BACKGROUND: The interest towards botanicals and plant extracts has strongly risen due to their numerous biological effects and ability to counteract chronic diseases development. Among these effects, chemoprevention which represents the possibility to counteract the cancerogenetic process is one of the most studied. The extracts of mushroom Meripilus giganteus (MG) (Phylum of Basidiomycota) showed to exert antimicrobic, antioxidant and antiproliferative effects. Therefore, since its effect in leukemic cell lines has not been previously evaluated, we studied its potential chemopreventive effect in Jurkat and HL-60 cell lines. METHODS: MG ethanolic extract was characterized for its antioxidant activity and scavenging effect against different radical species. Moreover, its phenolic profile was evaluated by HPLC-MS-MS analyses. Flow cytometry (FCM) analyses of Jurkat and HL-60 cells treated with MG extract (0-750 µg/mL) for 24-72 h- allowed to evaluate its cytotoxicity, pro-apoptotic and anti-proliferative effect. To better characterize MG pro-apoptotic mechanism ROS intracellular level and the gene expression level of FAS, BAX and BCL2 were also evaluated. Moreover, to assess MG extract selectivity towards cancer cells, its cytotoxicity was also evaluated in human peripheral blood lymphocytes (PBL). RESULTS: MG extract induced apoptosis in Jurkat and HL-60 cells in a dose- and time- dependent manner by increasing BAX/BCL2 ratio, reducing ROS intracellular level and inducing FAS gene expression level. In fact, reduced ROS level is known to be related to the activation of apoptosis in leukemic cells by the involvement of death receptors. MG extract also induced cell-cycle arrest in HL-60 cells. Moreover, IC50 at 24 h treatment resulted 2 times higher in PBL than in leukemic cell lines. CONCLUSIONS: Our data suggest that MG extract might be considered a promising and partially selective chemopreventive agent since it is able to modulate different mechanisms in transformed cells at concentrations lower than in non-transformed ones.


Subject(s)
Apoptosis/drug effects , Biological Products/pharmacology , Cell Proliferation/drug effects , Polyporales/chemistry , Antineoplastic Agents/pharmacology , Ethanol , HL-60 Cells , Humans , Jurkat Cells , Leukemia
17.
Cytometry B Clin Cytom ; 94(5): 696-706, 2018 09.
Article in English | MEDLINE | ID: mdl-28745810

ABSTRACT

BACKGROUND: It is now recognized that mutational events play a key role in the development of pathological processes like cancer, cardiovascular, and neurodegenerative disease. Therefore, it is crucial to have Genetics Toxicology tests that allow rapid and accurate identification of the mutagenic potential of a xenobiotic. Currently the most widely used technique is the "In vitro mammalian cell micronucleus test" performed by optical microscopy, but some problems have been highlighted, including the number of cells analyzed, the high subjectivity of the reading at the microscope and the long analysis times. AIM: The aim of this work was to develop a study protocol, for the automation of the "In vitro mammalian cell micronucleus test", by flow cytometry (FCM) analysis, to overcome the limits that afflict the optical microscopy. METHODS: The study was conducted on peripheral blood lymphocytes treated with three known clastogens and three known aneugens. RESULTS: The results obtained by the proposed FCM technique compared with those obtained through the validated method, demonstrated that the increase of micronuclei percentage is perfectly comparable between the two methods. CONCLUSIONS: This fact, in view of results supported by a high number of cells analyzed and obtained by an accurate and objective reading, with a considerable reduction of the analysis time, can support a future request for validation of the micronucleus analysis by FCM. © 2017 International Clinical Cytometry Society.


Subject(s)
Flow Cytometry , Lymphocytes/drug effects , Microscopy , Xenobiotics/pharmacology , Humans
18.
BMC Complement Altern Med ; 17(1): 251, 2017 May 05.
Article in English | MEDLINE | ID: mdl-28476162

ABSTRACT

BACKGROUND: Chemoprevention represents the possibility to prevent, stop or reverse the cancerogenetic process. In this context the interest towards natural extracts and botanical drugs has constantly grown due to their phytochemical content. Castanea sativa Mill. (CSM) extracts showed to exert positive effect in the prevention/counteraction of chronic/degenerative diseases, therefore, we evaluated the potential chemopreventive effect of CSM bark extract. METHODS: Flow cytometry (FCM) analyses of Jurkat cells treated with CSM bark extract (0-500 µg·mL-1) for 24-72 h allowed evaluating its cytotoxicity and ability to induce apoptosis through the intrinsic or extrinsic pathways. Moreover, to evaluate CSM bark extract selectivity towards cancer cells, its cytotoxic and pro-apoptotic effect was also evaluated in human peripheral blood lymphocytes (PBL). RESULTS: CSM bark extract induced apoptosis in Jurkat cells in a dose- and time- dependent manner activating the extrinsic pathways as evidenced by the increase of activated caspase-8 positive cells. Moreover, IC50 calculated after 24 h treatment resulted 304 and 128 µg·mL-1 in PBL and Jurkat cells respectively. CONCLUSIONS: Our data suggest that CSM bark extract might be considered an interesting potential anti-cancer agent, since it induces apoptosis in cancer cells without appreciable cytotoxic effects on non-transformed cells.


Subject(s)
Apoptosis/drug effects , Fagaceae/chemistry , Neoplasms/prevention & control , Plant Bark/chemistry , Plant Extracts/metabolism , Caspase 8/genetics , Caspase 8/metabolism , Humans , Jurkat Cells , Neoplasms/enzymology , Neoplasms/genetics
19.
Oncotarget ; 8(67): 111697-111714, 2017 Dec 19.
Article in English | MEDLINE | ID: mdl-29340085

ABSTRACT

Numerous laboratory and epidemiological studies show that the risk of developing several types of cancer can be reduced with the employment of natural substances that act with multiple mechanisms. In this context, an important role is played by the isothiocyanates. Recently, 6-(methylsulfonyl)hexyl isothiocyanate (6-MITC), present in the root of Wasabia Japonica, has stimulated the interest of researchers as a chemopreventive agent. In this particular study we have focused on evaluating 6-MITC's in vitro cytotoxic, cytostatic and cytodifferentiating activities, as well as its pro-apoptotic potential. These effects were investigated by way of flow cytometric analysis of Jurkat and HL-60 cells as well as of healthy lymphocytes extracted from the blood of AVIS donors, in order to verify a potential selectivity of action. The results demonstrate that 6-MITC exerts a stronger cytotoxic effect on tumour cells than on healthy cells. The apoptosis induction exerted by 6-MITC on transformed cells is triggered by an extrinsic pathway, as demonstrated by the statistically significant increase in the percentage of cells with activated caspase-8. It was also observed that 6-MITC is able to limit tumour growth by slowing down and blocking the cell cycle of Jurkat and HL-60 cells respectively, in a dose- and time-related manner, while exerting no activity of any kind on the replication of healthy cells. Finally, by measuring the expression levels of CD-14 and CD-15, 6-MITC showed the ability to induce cytodifferentiation of HL-60 cells into macrophage and granulocytic phenotypes.

20.
Cancer Treat Res ; 159: 207-23, 2014.
Article in English | MEDLINE | ID: mdl-24114482

ABSTRACT

Cancer is a complex disease characterized by multiple genetic and molecular alterations involving transformation, deregulation of apoptosis, proliferation, invasion, angiogenesis, and metastasis. To grow, invade, and metastasize, tumors need host components and primary dysfunction in the tumor microenvironment, in addition to cell dysfunction, can be crucial for carcinogenesis. A great variety of phytochemicals have been shown to be potentially capable of inhibiting and modulating several relevant targets simultaneously and is therefore non-specific. Because of the enormous biological diversity of cancer, this pleiotropism might constitute an advantage. Phytochemicals, in particular diet-derived compounds, have therefore been proposed and applied in clinical trials as cancer chemopreventive/chemotherapeutic agents. Sulforaphane (SFN) is an isothiocyanate found in cruciferous vegetables. SFN has proved to be an effective chemoprotective agent in cell culture, in carcinogen-induced and genetic animal cancer models, as well as in xenograft models of cancer. It promoted potent cytostatic and cytotoxic effects orchestrated by the modulation of different molecular targets. Cell vulnerability to SFN-mediated apoptosis was subject to regulation by cell-cycle-dependent mechanisms but was independent of a mutated p53 status. Moreover, combination of SFN with cytotoxic therapy potentiated the cytotoxic effect mediated by chemotherapy in vitro, thus suggesting its potential therapeutic benefit in clinical settings. Overall, SFN appears to be an effective and safe chemopreventive molecule and a promising tool to fight cancer.


Subject(s)
Anticarcinogenic Agents/therapeutic use , Isothiocyanates/therapeutic use , Neoplasms/prevention & control , Animals , Humans , Sulfoxides
SELECTION OF CITATIONS
SEARCH DETAIL
...