Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 44(14)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38467434

ABSTRACT

Alterations in γ-aminobutyric acid (GABA) have been implicated in sensory differences in individuals with autism spectrum disorder (ASD). Visual signals are initially processed in the retina, and in this study, we explored the hypotheses that the GABA-dependent retinal response to light is altered in individuals with ASD. Light-adapted electroretinograms were recorded from 61 adults (38 males and 23 females; n = 22 ASD) in response to three stimulus protocols: (1) the standard white flash, (2) the standard 30 Hz flickering protocol, and (3) the photopic negative response protocol. Participants were administered an oral dose of placebo, 15 or 30 mg of arbaclofen (STX209, GABAB agonist) in a randomized, double-blind, crossover order before the test. At baseline (placebo), the a-wave amplitudes in response to single white flashes were more prominent in ASD, relative to typically developed (TD) participants. Arbaclofen was associated with a decrease in the a-wave amplitude in ASD, but an increase in TD, eliminating the group difference observed at baseline. The extent of this arbaclofen-elicited shift significantly correlated with the arbaclofen-elicited shift in cortical responses to auditory stimuli as measured by using an electroencephalogram in our prior study and with broader autistic traits measured with the autism quotient across the whole cohort. Hence, GABA-dependent differences in retinal light processing in ASD appear to be an accessible component of a wider autistic difference in the central processing of sensory information, which may be upstream of more complex autistic phenotypes.


Subject(s)
Autism Spectrum Disorder , Male , Adult , Female , Humans , Autism Spectrum Disorder/drug therapy , Retina , Electroencephalography , gamma-Aminobutyric Acid , Electroretinography
2.
Doc Ophthalmol ; 148(1): 25-36, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37924416

ABSTRACT

PURPOSE: Both rod and cone-driven signals contribute to the electroretinogram (ERG) elicited by a standard strong flash in the dark. Negative ERGs usually reflect inner retinal dysfunction. However, in diseases where rod photoreceptor function is selectively lost, a negative waveform might represent the response of the dark-adapted cone system. To investigate the dark-adapted cone-driven waveform in healthy individuals, we delivered flashes on a dim blue background, designed to saturate the rods, but minimally adapt the cones. METHODS: ERGs were recorded, using conductive fibre electrodes, in adults from the TwinsUK cohort. Responses to 13 cd m-2 s white xenon flashes (similar to the standard DA 10 flash), delivered on a blue background, were analysed. Photopic and scotopic strengths of the background were 1.3 and 30 cd m-2, respectively; through a dilated pupil, this is expected to largely saturate the rods, but adapt the cones much less than the standard ISCEV background. RESULTS: Mean (SD) participant age was 62.5 (11.3) years (93% female). ERGs from 203 right and 204 left eyes were included, with mean (SD) b/a ratios of 1.22 (0.28) and 1.18 (0.28), respectively (medians, 1.19 and 1.17). Proportions with negative waveforms were 23 and 26%, respectively. Right and left eye b/a ratios were strongly correlated (correlation coefficient 0.74, p < 0.0001). We found no significant correlation of b/a ratio with age. CONCLUSIONS: Over 20% of eyes showed b/a ratios less than 1, consistent with the notion that dark-adapted cone-driven responses to standard bright flashes can have negative waveforms. The majority had ratios greater than 1. Thus, whilst selective loss of rod function can yield a negative waveform (with reduced a-wave) in some, our findings also suggest that loss of rod function can occur without necessarily yielding a negative ERG. One potential limitation is possible mild cone system adaptation by the background.


Subject(s)
Electroretinography , Retinal Cone Photoreceptor Cells , Adult , Humans , Female , Middle Aged , Male , Prevalence , Dark Adaptation , Photic Stimulation , Retinal Cone Photoreceptor Cells/physiology
3.
Doc Ophthalmol ; 147(3): 165-177, 2023 12.
Article in English | MEDLINE | ID: mdl-37889400

ABSTRACT

PURPOSE: To compare the diagnostic accuracy of the photopic negative response (PhNR) elicited by red-blue (RB) and white-white (WW) stimuli, for detection of retinal ganglion cell (RGC) dysfunction in a heterogeneous clinical cohort. METHODS: Adults referred for electrophysiological investigations were recruited consecutively for this single-centre, prospective, paired diagnostic accuracy study. PhNRs were recorded to red flashes (1.5 cd·s·m-2) on a blue background (10 cd·m-2) and to white flashes on a white background (the latter being the ISCEV standard LA 3 stimulus). PhNR results were compared with a reference test battery assessing RGC/optic nerve structure and function including optical coherence tomography (OCT) retinal nerve fibre layer thickness and mean RGC volume measurements, fundus photography, pattern electroretinography and visual evoked potentials. Primary outcome measures were differences in sensitivity and specificity of the two PhNR methods. RESULTS: Two hundred and forty-three participants were initially enrolled, with 200 (median age 54; range 18-95; female 65%) meeting inclusion criteria. Sensitivity was 53% (95% confidence intervals [CI] 39% to 68%) and 62% (95% CI 48% to 76%), for WW and RB PhNRs, respectively. Specificity was 80% (95% CI 74% to 86%) and 78% (95% CI 72% to 85%), respectively. There was a statistically significant difference between sensitivities (p = 0.046) but not specificities (p = 0.08) of the two methods. Receiver operator characteristic (ROC) area under the curve (AUC) values were 0.73 for WW and 0.74 for RB PhNRs. CONCLUSION: PhNRs to red flashes on a blue background may be more sensitive than white-on-white stimuli, but there is no significant difference between specificities. This study highlights the value and potential convenience of using white-on-white stimuli, already used widely for routine ERG assessment.


Subject(s)
Electroretinography , Evoked Potentials, Visual , Adult , Humans , Female , Middle Aged , Electroretinography/methods , Prospective Studies , Retina/physiology , Retinal Ganglion Cells/physiology , Photic Stimulation
4.
Proc Natl Acad Sci U S A ; 119(21): e2119675119, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35594404

ABSTRACT

Myopia is the commonest visual impairment. Several genetic loci confer risk, but mechanisms by which they do this are unknown. Retinal signals drive eye growth, and myopia usually results from an excessively long eye. The common variant most strongly associated with myopia is near the GJD2 gene, encoding connexin-36, which forms retinal gap junctions. Light-evoked responses of retinal neurons can be recorded noninvasively as the electroretinogram (ERG). We analyzed these responses from 186 adult twin volunteers who had been genotyped at this locus. Participants underwent detailed ERG recordings incorporating international standard stimuli as well as experimental protocols aiming to separate dark-adapted rod- and cone-driven responses. A mixed linear model was used to explore association between allelic dosage at the locus and international standard ERG parameters after adjustment for age, sex, and family structure. Significant associations were found for parameters of light-adapted, but not dark-adapted, responses. Further investigation of isolated rod- and cone-driven ERGs confirmed associations with cone-driven, but not rod-driven, a-wave amplitudes. Comparison with responses to similar experimental stimuli from a patient with a prior central retinal artery occlusion, and from two patients with selective loss of ON-bipolar cell signals, was consistent with the associated parameters being derived from signals from cone-driven OFF-bipolar cells. Analysis of single-cell transcriptome data revealed strongest GJD2 expression in cone photoreceptors; bipolar cell expression appeared strongest in OFF-bipolar cells and weakest in rod-driven ON-bipolar cells. Our findings support a potential role for altered signaling in cone-driven OFF pathways in myopia development.


Subject(s)
Myopia , Retinal Cone Photoreceptor Cells , Electroretinography/methods , Genome-Wide Association Study , Humans , Myopia/genetics , Myopia/metabolism , Polymorphism, Genetic , Retinal Cone Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/metabolism
5.
Life (Basel) ; 11(5)2021 May 13.
Article in English | MEDLINE | ID: mdl-34068365

ABSTRACT

The photopic negative response (PhNR) is a negative component of the photopic flash electroretinogram that follows the b-wave and is thought to arise from the retinal ganglion cells. Reduction in its amplitude in idiopathic intracranial hypertension (IIH) has been previously documented using formal electroretinography. This study explored the use of a handheld device (RETeval, LKC technologies, Gaithersburg, MD, USA) in 72 IIH patients of varying stages and severity (and seven controls) and investigated associations between PhNR parameters and disease severity. PhNR amplitudes at 72 ms (P72) and p-ratio (ratio to b-wave peak value) differed significantly across groups, with a trend towards smaller amplitudes in those with severe IIH, defined as papilloedema with Modified Frisén Scale (MFS) ≥ 3, retinal nerve fibre layer (RNFL) ≥ 150 µm or atrophic papilloedema (p = 0.0048 and p = 0.018 for P72 and p-ratio, respectively). PhNR parameters did not correlate with MFS, RNFL thickness, standard automated perimetry mean deviation or macular ganglion cell layer volume. This study suggests that PhNR measurement using a handheld device is feasible and could potentially augment the assessment of disease severity in IIH. The clinical utility of PhNR monitoring in IIH patients requires further investigation.

6.
Am J Ophthalmol ; 225: 95-107, 2021 05.
Article in English | MEDLINE | ID: mdl-33309813

ABSTRACT

PURPOSE: To investigate genetics, electrophysiology, and clinical course of KCNV2-associated retinopathy in a cohort of children and adults. STUDY DESIGN: This was a multicenter international clinical cohort study. METHODS: Review of clinical notes and molecular genetic testing. Full-field electroretinography (ERG) recordings, incorporating the international standards, were reviewed and quantified and compared with age and recordings from control subjects. RESULTS: In total, 230 disease-associated alleles were identified from 117 patients, corresponding to 75 different KCNV2 variants, with 28 being novel. The mean age of onset was 3.9 years old. All patients were symptomatic before 12 years of age (range, 0-11 years). Decreased visual acuity was present in all patients, and 4 other symptoms were common: reduced color vision (78.6%), photophobia (53.5%), nyctalopia (43.6%), and nystagmus (38.6%). After a mean follow-up of 8.4 years, the mean best-corrected visual acuity (BCVA ± SD) decreased from 0.81 ± 0.27 to 0.90 ± 0.31 logarithm of minimal angle of resolution. Full-field ERGs showed pathognomonic waveform features. Quantitative assessment revealed a wide range of ERG amplitudes and peak times, with a mean rate of age-associated reduction indistinguishable from the control group. Mean amplitude reductions for the dark-adapted 0.01 ERG, dark-adapted 10 ERG a-wave, and LA 3.0 30 Hz and LA3 ERG b-waves were 55%, 21%, 48%, and 74%, respectively compared with control values. Peak times showed stability across 6 decades. CONCLUSION: In KCNV2-associated retinopathy, full-field ERGs are diagnostic and consistent with largely stable peripheral retinal dysfunction. Report 1 highlights the severity of the clinical phenotype and established a large cohort of patients, emphasizing the unmet need for trials of novel therapeutics.


Subject(s)
Potassium Channels, Voltage-Gated/genetics , Retina/physiopathology , Retinitis Pigmentosa/genetics , Adolescent , Adult , Aged , Alleles , Child , Child, Preschool , Dark Adaptation/physiology , Electroretinography , Female , High-Throughput Nucleotide Sequencing , Humans , Infant , Infant, Newborn , Male , Middle Aged , Molecular Biology , Phenotype , Refraction, Ocular/physiology , Retinitis Pigmentosa/physiopathology , Retrospective Studies , Tomography, Optical Coherence , Vision Disorders/diagnosis , Vision Disorders/genetics , Vision Disorders/physiopathology , Visual Acuity/physiology , Exome Sequencing , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...