Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
mBio ; 15(5): e0037424, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38564687

ABSTRACT

DNA repair machinery has been found to be indispensable for fluoroquinolone (FQ) persistence of Escherichia coli. Previously, we found that cells harboring two copies of the chromosome (2Chr) in stationary-phase cultures were more likely to yield FQ persisters than those with one copy of the chromosome (1Chr). Furthermore, we found that RecA and RecB were required to observe that difference, and that loss of either more significantly impacted 2Chr persisters than 1Chr persisters. To better understand the survival mechanisms of persisters with different chromosome abundances, we examined their dependencies on different DNA repair proteins. Here, we show that lexA3 and ∆recN negatively impact the abundances of 2Chr persisters to FQs, without significant impacts on 1Chr persisters. In comparison, ∆xseA, ∆xseB, and ∆uvrD preferentially depress 1Chr persistence to levels that were near the limit of detection. Collectively, these data show that the DNA repair mechanisms used by persisters vary based on chromosome number, and suggest that efforts to eradicate FQ persisters will likely have to take heterogeneity in single-cell chromosome abundance into consideration. IMPORTANCE: Persisters are rare phenotypic variants in isogenic populations that survive antibiotic treatments that kill the other cells present. Evidence has accumulated that supports a role for persisters in chronic and recurrent infections. Here, we explore how an under-appreciated phenotypic variable, chromosome copy number (#Chr), influences the DNA repair systems persisters use to survive fluoroquinolone treatments. We found that #Chr significantly biases the DNA repair systems used by persisters, which suggests that #Chr heterogeneity should be considered when devising strategies to eradicate these troublesome bacterial variants.


Subject(s)
Anti-Bacterial Agents , Chromosomes, Bacterial , DNA Repair , Escherichia coli Proteins , Escherichia coli , Fluoroquinolones , Fluoroquinolones/pharmacology , Escherichia coli/genetics , Escherichia coli/drug effects , Anti-Bacterial Agents/pharmacology , Chromosomes, Bacterial/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Microbial Sensitivity Tests , Drug Resistance, Bacterial/genetics
2.
J Antibiot (Tokyo) ; 77(3): 135-146, 2024 03.
Article in English | MEDLINE | ID: mdl-38114565

ABSTRACT

Cephalosporins comprise a ß-lactam antibiotic class whose first members were discovered in 1945 from the fungus Cephalosporium acremonium. Their clinical use for Gram-negative bacterial infections is widespread due to their ability to traverse outer membranes through porins to gain access to the periplasm and disrupt peptidoglycan synthesis. More recent members of the cephalosporin class are administered as last resort treatments for complicated urinary tract infections, MRSA, and other multi-drug resistant pathogens, such as Neisseria gonorrhoeae. Unfortunately, there has been a global increase in cephalosporin-resistant strains, heteroresistance to this drug class has been a topic of increasing concern, and tolerance and persistence are recognized as potential causes of cephalosporin treatment failure. In this review, we summarize the cephalosporin antibiotic class from discovery to their mechanisms of action, and discuss the causes of cephalosporin treatment failure, which include resistance, tolerance, and phenomena when those qualities are exhibited by only small subpopulations of bacterial cultures (heteroresistance and persistence). Further, we discuss how recent efforts with cephalosporin conjugates and combination treatments aim to reinvigorate this antibiotic class.


Subject(s)
Cephalosporin Resistance , Gram-Negative Bacterial Infections , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Cephalosporins/pharmacology , Cephalosporins/therapeutic use , Gram-Negative Bacterial Infections/drug therapy , Neisseria gonorrhoeae , Monobactams/therapeutic use
3.
J Antibiot (Tokyo) ; 75(11): 593-609, 2022 11.
Article in English | MEDLINE | ID: mdl-36123537

ABSTRACT

Polymyxins are a class of antibiotics that were discovered in 1947 from programs searching for compounds effective in the treatment of Gram-negative infections. Produced by the Gram-positive bacterium Paenibacillus polymyxa and composed of a cyclic peptide chain with a peptide-fatty acyl tail, polymyxins exert bactericidal effects through membrane disruption. Currently, polymyxin B and colistin (polymyxin E) have been developed for clinical use, where they are reserved as "last-line" therapies for multidrug-resistant (MDR) infections. Unfortunately, the incidences of strains resistant to polymyxins have been increasing globally, and polymyxin heteroresistance has been gaining appreciation as an important clinical challenge. These phenomena, along with bacterial tolerance to this antibiotic class, constitute important contributors to polymyxin treatment failure. Here, we review polymyxins and their mechanism of action, summarize the current understanding of how polymyxin treatment fails, and discuss how the next generation of polymyxins holds promise to invigorate this antibiotic class.


Subject(s)
Colistin , Polymyxins , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Colistin/pharmacology , Colistin/therapeutic use , Polymyxin B/pharmacology , Polymyxin B/therapeutic use , Polymyxins/chemistry , Polymyxins/pharmacology , Polymyxins/therapeutic use , Treatment Failure
4.
J Antibiot (Tokyo) ; 74(11): 786-798, 2021 11.
Article in English | MEDLINE | ID: mdl-34400805

ABSTRACT

Rifamycins are a class of antibiotics that were first discovered in 1957 and are known for their use in treating tuberculosis (TB). Rifamycins exhibit bactericidal activity against many Gram-positive and Gram-negative bacteria by inhibiting RNA polymerase (RNAP); however, resistance is prevalent and the mechanisms range from primary target modification and antibiotic inactivation to cytoplasmic exclusion. Further, phenotypic resistance, in which only a subpopulation of bacteria grow in concentrations exceeding their minimum inhibitory concentration, and tolerance, which is characterized by reduced rates of bacterial cell death, have been identified as additional causes of rifamycin failure. Here we summarize current understanding and recent developments regarding this critical antibiotic class.


Subject(s)
Antibiotics, Antitubercular/therapeutic use , Rifamycins/therapeutic use , Tuberculosis/drug therapy , Animals , Antibiotics, Antitubercular/pharmacology , Drug Resistance, Microbial , Humans , Mycobacterium tuberculosis , Rifamycins/pharmacology , Treatment Failure
SELECTION OF CITATIONS
SEARCH DETAIL