Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37961355

ABSTRACT

Dystonia arises with cerebellar dysfunction, which plays a key role in the emergence of multiple pathophysiological deficits that range from abnormal movements and postures to disrupted sleep. Current therapeutic interventions typically do not simultaneously address both the motor and non-motor (sleep-related) symptoms of dystonia, underscoring the necessity for a multi-functional therapeutic strategy. Deep brain stimulation (DBS) is effectively used to reduce motor symptoms in dystonia, with existing parallel evidence arguing for its potential to correct sleep disturbances. However, the simultaneous efficacy of DBS for improving sleep and motor dysfunction, specifically by targeting the cerebellum, remains underexplored. Here, we test the effect of cerebellar DBS in two genetic mouse models with dystonia that exhibit sleep defects- Ptf1a Cre ;Vglut2 fx/fx and Pdx1 Cre ;Vglut2 fx/fx -which have overlapping cerebellar circuit miswiring defects but differing severity in motor phenotypes. By targeting DBS to the cerebellar fastigial and interposed nuclei, we modulated sleep dysfunction by enhancing sleep quality and timing in both models. This DBS paradigm improved wakefulness (decreased) and rapid eye movement (REM) sleep (increased) in both mutants. Additionally, the latency to reach REM sleep, a deficit observed in human dystonia patients, was reduced in both models. Cerebellar DBS also induced alterations in the electrocorticogram (ECoG) patterns that define sleep states. As expected, DBS reduced the severe dystonic twisting motor symptoms that are observed in the Ptf1a Cre ;Vglut2 fx/fx mutant mice. These findings highlight the potential for using cerebellar DBS to improve sleep and reduce motor dysfunction in dystonia and uncover its potential as a dual-effect in vivo therapeutic strategy.

2.
bioRxiv ; 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37425771

ABSTRACT

Nocturnal aversive stimuli presented to mice during eating and drinking outside of their safe nest can entrain circadian behaviors, leading to a shift toward daytime activity. We show that the canonical molecular circadian clock is necessary for fear entrainment and that an intact molecular clockwork in the suprachiasmatic nucleus (SCN), the site of the central circadian pacemaker, is necessary but not sufficient to sustain fear entrainment of circadian rhythms. Our results demonstrate that entrainment of a circadian clock by cyclic fearful stimuli can lead to severely mistimed circadian behavior that persists even after the aversive stimulus is removed. Together, our results support the interpretation that circadian and sleep symptoms associated with fear and anxiety disorders may represent the output of a fear-entrained clock. One-Sentence Summary: Cyclic fearful stimuli can entrain circadian rhythms in mice, and the molecular clock within the central circadian pacemaker is necessary but not sufficient for fear-entrainment.

3.
bioRxiv ; 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36798256

ABSTRACT

Although dystonia is the third most common movement disorder, patients often also experience debilitating nonmotor defects including impaired sleep. The cerebellum is a central component of a "dystonia network" that plays various roles in sleep regulation. Importantly, the primary driver of sleep impairments in dystonia remains poorly understood. The cerebellum, along with other nodes in the motor circuit, could disrupt sleep. However, it is unclear how the cerebellum might alter sleep and mobility. To disentangle the impact of cerebellar dysfunction on motion and sleep, we generated two mouse genetic models of dystonia that have overlapping cerebellar circuit miswiring but show differing motor phenotype severity: Ptf1a Cre ;Vglut2 fx/fx and Pdx1 Cre ;Vglut2 fx/fx mice. In both models, excitatory climbing fiber to Purkinje cell neurotransmission is blocked, but only the Ptf1a Cre ;Vglut2 fx/fx mice have severe twisting. Using in vivo ECoG and EMG recordings we found that both mutants spend greater time awake and in NREM sleep at the expense of REM sleep. The increase in awake time is driven by longer awake bouts rather than an increase in bout number. We also found a longer latency to reach REM in both mutants, which is similar to what is reported in human dystonia. We uncovered independent but parallel roles for cerebellar circuit dysfunction and motor defects in promoting sleep quality versus posture impairments in dystonia.

SELECTION OF CITATIONS
SEARCH DETAIL
...