Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 333(6044): 856-9, 2011 Aug 12.
Article in English | MEDLINE | ID: mdl-21836010

ABSTRACT

Type Ia supernovae are key tools for measuring distances on a cosmic scale. They are generally thought to be the thermonuclear explosion of an accreting white dwarf in a close binary system. The nature of the mass donor is still uncertain. In the single-degenerate model it is a main-sequence star or an evolved star, whereas in the double-degenerate model it is another white dwarf. We show that the velocity structure of absorbing material along the line of sight to 35 type Ia supernovae tends to be blueshifted. These structures are likely signatures of gas outflows from the supernova progenitor systems. Thus, many type Ia supernovae in nearby spiral galaxies may originate in single-degenerate systems.

2.
Nature ; 465(7296): 322-5, 2010 May 20.
Article in English | MEDLINE | ID: mdl-20485429

ABSTRACT

Supernovae are thought to arise from two different physical processes. The cores of massive, short-lived stars undergo gravitational core collapse and typically eject a few solar masses during their explosion. These are thought to appear as type Ib/c and type II supernovae, and are associated with young stellar populations. In contrast, the thermonuclear detonation of a carbon-oxygen white dwarf, whose mass approaches the Chandrasekhar limit, is thought to produce type Ia supernovae. Such supernovae are observed in both young and old stellar environments. Here we report a faint type Ib supernova, SN 2005E, in the halo of the nearby isolated galaxy, NGC 1032. The 'old' environment near the supernova location, and the very low derived ejected mass ( approximately 0.3 solar masses), argue strongly against a core-collapse origin. Spectroscopic observations and analysis reveal high ejecta velocities, dominated by helium-burning products, probably excluding this as a subluminous or a regular type Ia supernova. We conclude that it arises from a low-mass, old progenitor, likely to have been a helium-accreting white dwarf in a binary. The ejecta contain more calcium than observed in other types of supernovae and probably large amounts of radioactive (44)Ti.

3.
Nature ; 458(7240): 865-7, 2009 Apr 16.
Article in English | MEDLINE | ID: mdl-19305392

ABSTRACT

Our understanding of the evolution of massive stars before their final explosions as supernovae is incomplete, from both an observational and a theoretical standpoint. A key missing piece in the supernova puzzle is the difficulty of identifying and studying progenitor stars. In only a single case-that of supernova SN 1987A in the Large Magellanic Cloud-has a star been detected at the supernova location before the explosion, and been subsequently shown to have vanished after the supernova event. The progenitor of SN 1987A was a blue supergiant, which required a rethink of stellar evolution models. The progenitor of supernova SN 2005gl was proposed to be an extremely luminous object, but the association was not robustly established (it was not even clear that the putative progenitor was a single luminous star). Here we report that the previously proposed object was indeed the progenitor star of SN 2005gl. This very massive star was likely a luminous blue variable that standard stellar evolution predicts should not have exploded in that state.

4.
IEEE Trans Inf Technol Biomed ; 13(4): 494-500, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19273015

ABSTRACT

The technology exists for the migration of healthcare data from its archaic paper-based system to an electronic one, and, once in digital form, to be transported anywhere in the world in a matter of seconds. The advent of universally accessible healthcare data has benefited all participants, but one of the outstanding problems that must be addressed is how the creation of a standardized nationwide electronic healthcare record system in the United States would uniquely identify and match a composite of an individual's recorded healthcare information to an identified individual patients out of approximately 300 million people to a 1:1 match. To date, a few solutions to this problem have been proposed that are limited in their effectiveness. We propose the use of biometric technology within our fingerprint, iris, retina scan, and DNA (FIRD) framework, which is a multiphase system whose primary phase is a multilayer consisting of these four types of biometric identifiers: 1) fingerprint; 2) iris; 3) retina scan; and 4) DNA. In addition, it also consists of additional phases of integration, consolidation, and data discrepancy functions to solve the unique association of a patient to their medical data distinctively. This would allow a patient to have real-time access to all of their recorded healthcare information electronically whenever it is necessary, securely with minimal effort, greater effectiveness, and ease.


Subject(s)
Biometry/methods , Computer Security , Medical Records Systems, Computerized , Patient Identification Systems/methods , DNA , Dermatoglyphics , Humans , Iris , Retina
5.
Science ; 317(5840): 924-6, 2007 Aug 17.
Article in English | MEDLINE | ID: mdl-17626848

ABSTRACT

Type Ia supernovae are important cosmological distance indicators. Each of these bright supernovae supposedly results from the thermonuclear explosion of a white dwarf star that, after accreting material from a companion star, exceeds some mass limit, but the true nature of the progenitor star system remains controversial. Here we report the spectroscopic detection of circumstellar material in a normal type Ia supernova explosion. The expansion velocities, densities, and dimensions of the circumstellar envelope indicate that this material was ejected from the progenitor system. In particular, the relatively low expansion velocities suggest that the white dwarf was accreting material from a companion star that was in the red-giant phase at the time of the explosion.

6.
Nature ; 444(7122): 1053-5, 2006 Dec 21.
Article in English | MEDLINE | ID: mdl-17183318

ABSTRACT

Over the past decade, our physical understanding of gamma-ray bursts (GRBs) has progressed rapidly, thanks to the discovery and observation of their long-lived afterglow emission. Long-duration (> 2 s) GRBs are associated with the explosive deaths of massive stars ('collapsars', ref. 1), which produce accompanying supernovae; the short-duration (< or = 2 s) GRBs have a different origin, which has been argued to be the merger of two compact objects. Here we report optical observations of GRB 060614 (duration approximately 100 s, ref. 10) that rule out the presence of an associated supernova. This would seem to require a new explosive process: either a massive collapsar that powers a GRB without any associated supernova, or a new type of 'engine', as long-lived as the collapsar but without a massive star. We also show that the properties of the host galaxy (redshift z = 0.125) distinguish it from other long-duration GRB hosts and suggest that an entirely new type of GRB progenitor may be required.

7.
Nature ; 438(7070): 988-90, 2005 Dec 15.
Article in English | MEDLINE | ID: mdl-16355217

ABSTRACT

Despite a rich phenomenology, gamma-ray bursts (GRBs) are divided into two classes based on their duration and spectral hardness--the long-soft and the short-hard bursts. The discovery of afterglow emission from long GRBs was a watershed event, pinpointing their origin to star-forming galaxies, and hence the death of massive stars, and indicating an energy release of about 10(51) erg. While theoretical arguments suggest that short GRBs are produced in the coalescence of binary compact objects (neutron stars or black holes), the progenitors, energetics and environments of these events remain elusive despite recent localizations. Here we report the discovery of the first radio afterglow from the short burst GRB 050724, which unambiguously associates it with an elliptical galaxy at a redshift z = 0.257. We show that the burst is powered by the same relativistic fireball mechanism as long GRBs, with the ejecta possibly collimated in jets, but that the total energy release is 10-1,000 times smaller. More importantly, the nature of the host galaxy demonstrates that short GRBs arise from an old (> 1 Gyr) stellar population, strengthening earlier suggestions and providing support for coalescing compact object binaries as the progenitors.

SELECTION OF CITATIONS
SEARCH DETAIL
...