Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Front Neurol ; 15: 1388506, 2024.
Article in English | MEDLINE | ID: mdl-38952469

ABSTRACT

Background: Sleep is disturbed in Rett syndrome (RTT), a rare and progressive neurodevelopmental disorder primarily affecting female patients (prevalence 7.1/100,000 female patients) linked to pathogenic variations in the X-linked methyl-CpG-binding protein 2 (MECP2) gene. Autonomic nervous system dysfunction with a predominance of the sympathetic nervous system (SNS) over the parasympathetic nervous system (PSNS) is reported in RTT, along with exercise fatigue and increased sudden death risk. The aim of the present study was to test the feasibility of a continuous 24 h non-invasive home monitoring of the biological vitals (biovitals) by an innovative wearable sensor device in pediatric and adolescent/adult RTT patients. Methods: A total of 10 female patients (mean age 18.3 ± 9.4 years, range 4.7-35.5 years) with typical RTT and MECP2 pathogenic variations were enrolled. Clinical severity was assessed by validated scales. Heart rate (HR), respiratory rate (RR), and skin temperature (SkT) were monitored by the YouCare Wearable Medical Device (Accyourate Group SpA, L'Aquila, Italy). The average percentage of maximum HR (HRmax%) was calculated. Heart rate variability (HRV) was expressed by consolidated time-domain and frequency-domain parameters. The HR/LF (low frequency) ratio, indicating SNS activation under dynamic exercise, was calculated. Simultaneous continuous measurement of indoor air quality variables was performed and the patients' contributions to the surrounding water vapor partial pressure [PH2O (pt)] and carbon dioxide [PCO2 (pt)] were indirectly estimated. Results: Of the 6,559.79 h of biovital recordings, 5051.03 h (77%) were valid for data interpretation. Sleep and wake hours were 9.0 ± 1.1 h and 14.9 ± 1.1 h, respectively. HRmax % [median: 71.86% (interquartile range 61.03-82%)] and HR/LF [median: 3.75 (interquartile range 3.19-5.05)] were elevated, independent from the wake-sleep cycle. The majority of HRV time- and frequency-domain parameters were significantly higher in the pediatric patients (p ≤ 0.031). The HRV HR/LF ratio was associated with phenotype severity, disease progression, clinical sleep disorder, subclinical hypoxia, and electroencephalographic observations of multifocal epileptic activity and general background slowing. Conclusion: Our findings indicate the feasibility of a continuous 24-h non-invasive home monitoring of biovital parameters in RTT. Moreover, for the first time, HRmax% and the HR/LF ratio were identified as potential objective markers of fatigue, illness severity, and disease progression.

2.
Children (Basel) ; 10(9)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37761403

ABSTRACT

Pathogenic loss-of-function variants in the IQ motif and SEC7 domain containing protein 2 (IQSEC2) gene cause intellectual disability with Rett syndrome (RTT)-like features. The aim of this study was to obtain systematic information on the natural history and extra-central nervous system (CNS) manifestations for the Italian IQSEC2 population (>90%) by using structured family interviews and semi-quantitative questionnaires. IQSEC2 encephalopathy prevalence estimate was 7.0 to 7.9 × 10-7. Criteria for typical RTT were met in 42.1% of the cases, although psychomotor regression was occasionally evidenced. Genetic diagnosis was occasionally achieved in infancy despite a clinical onset before the first 24 months of life. High severity in both the CNS and extra-CNS manifestations for the IQSEC2 patients was documented and related to a consistently adverse quality of life. Neurodevelopmental delay was diagnosed before the onset of epilepsy by 1.8 to 2.4 years. An earlier age at menarche in IQSEC2 female patients was reported. Sleep disturbance was highly prevalent (60 to 77.8%), with mandatory co-sleeping behavior (50% of the female patients) being related to de novo variant origin, younger age, taller height with underweight, better social interaction, and lower life quality impact for the family and friends area. In conclusion, the IQSEC2 encephalopathy is a rare and likely underdiagnosed developmental encephalopathy leading to an adverse life quality impact.

3.
Front Neurol ; 13: 833239, 2022.
Article in English | MEDLINE | ID: mdl-35422749

ABSTRACT

Background: Breathing abnormalities are common in Rett syndrome (RTT), a pervasive neurodevelopmental disorder almost exclusively affecting females. RTT is linked to mutations in the methyl-CpG-binding protein 2 (MeCP2) gene. Our aim was to assess the clinical relevance of apneas during sleep-wakefulness cycle in a population with RTT and the possible impact of apneas on circulating oxidative stress markers. Methods: Female patients with a clinical diagnosis of typical RTT (n = 66), MECP2 gene mutation, and apneas were enrolled (mean age: 12.5 years). Baseline clinical severity, arterial blood gas analysis, and red blood cell count were assessed. Breathing was monitored during the wakefulness and sleep states (average recording time: 13 ± 0.5 h) with a portable polygraphic screening device. According to prevalence of breath holdings, the population was categorized into the wakefulness apnea (WA) and sleep apnea (SA) groups, and apnea-hypopnea index (AHI) was calculated. The impact of respiratory events on oxidative stress was assessed by plasma and intra-erythrocyte non-protein-bound iron (P-NPBI and IE-NPBI, respectively), and plasma F2-isoprostane (F2-IsoP) assays. Results: Significant prevalence of obstructive apneas with values of AHI > 15 was present in 69.7% of the population with RTT. The group with SA showed significantly increased AHI values > 15 (p = 0.0032), total breath holding episodes (p = 0.007), and average SpO2 (p = 0.0001) as well as lower nadir SpO2 (p = 0.0004) compared with the patients with WAs. The subgroups of patients with WA and SA showed no significant differences in arterial blood gas analysis variables (p > 0.089). Decreased mean cell hemoglobin (MCH) (p = 0.038) was observed in the group with WAs. P-NPBI levels were significantly higher in the group with WA than in that with SAs (p = 0.0001). Stepwise multiple linear regression models showed WA being related to nadir SpO2, average SpO2, and P-NPBI (adjusted R 2 = 0.613, multiple correlation coefficient = 0.795 p < 0.0001), and P-NPBI being related to average SpO2, blood PaCO2, red blood cell mean corpuscular volume (MCV), age, and topiramate treatment (adjusted R 2 = 0.551, multiple correlation coefficient = 0.765, p < 0.0001). Conclusion: Our findings indicate that the impact of apneas in RTT is uneven according to the sleep-wakefulness cycle, and that plasma redox active iron represents a potential novel therapeutic target.

4.
Life (Basel) ; 12(2)2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35207434

ABSTRACT

Cerebral adrenoleukodystrophy (ALD) is a rare neuroinflammatory disorder characterized by progressive demyelination. Mutations within the ABCD1 gene result in very long-chain fatty acid (VLCFA) accumulation within the peroxisome, particularly in the brain. While this VLCFA accumulation is known to be the driving cause of the disease, oxidative stress can be a contributing factor. For patients with early cerebral disease, allogeneic hematopoietic stem cell transplantation (HSCT) is the standard of care, and this can be supported by antioxidants. To evaluate the involvement of fatty acid oxidation in the disease, F2-isoprostanes (F2-IsoPs), F2-dihomo-isoprostanes (F2-dihomo-IsoPs) and F4-neuroprostanes (F4-NeuroPs)-which are oxygenated metabolites of arachidonic (ARA), adrenic (AdA) and docosahexaenoic (DHA) acids, respectively-in plasma samples from ALD subjects (n = 20)-with various phenotypes of the disease-were measured. Three ALD groups were classified according to patients with: (1) confirmed diagnosis of ALD but without cerebral disease; (2) cerebral disease in early period post-HSCT (<100 days post-HSCT) and on intravenous N-acetyl-L-cysteine (NAC) treatment; (3) cerebral disease in late period post-HSCT (beyond 100 days post-HSCT) and off NAC therapy. In our observation, when compared to healthy subjects (n = 29), in ALD (i), F2-IsoPs levels were significantly (p < 0.01) increased in all patients, with the single exception of the early ALD and on NAC subjects; (ii) significant elevated (p < 0.0001) amounts of F2-dihomo-IsoPs were detected, with the exception of patients with a lack of cerebral disease; (iii), a significant increase (p < 0.003) in F4-NeuroP plasma levels was detected in all ALD patients. Moreover, F2-IsoPs plasma levels were significantly higher (p = 0.038) in early ALD in comparison to late ALD stage, and F4-NeuroPs were significantly lower (p = 0.012) in ALD subjects with a lack of cerebral disease in comparison to the late disease stage. Remarkably, plasma amounts of all investigated isoprostanoids were shown to discriminate ALD patients vs. healthy subjects. Altogether, isoprostanoids are relevant to the phenotype of X-ALD and may be helpful in predicting the presence of cerebral disease and establishing the risk of progression.

5.
Int J Mol Sci ; 22(8)2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33921863

ABSTRACT

Neuroprostanes, a family of non-enzymatic metabolites of the docosahexaenoic acid, have been suggested as potential biomarkers for neurological diseases. Objective biological markers are strongly needed in Rett syndrome (RTT), which is a progressive X-linked neurodevelopmental disorder that is mainly caused by mutations in the methyl-CpG binding protein 2 (MECP2) gene with a predominant multisystemic phenotype. The aim of the study is to assess a possible association between MECP2 mutations or RTT disease progression and plasma levels of 4(RS)-4-F4t-neuroprostane (4-F4t-NeuroP) and 10(RS)-10-F4t-neuroprostane (10-F4t-NeuroP) in typical RTT patients with proven MECP2 gene mutation. Clinical severity and disease progression were assessed using the Rett clinical severity scale (RCSS) in n = 77 RTT patients. The 4-F4t-NeuroP and 10-F4t-NeuroP molecules were totally synthesized and used to identify the contents of the plasma of the patients. Neuroprostane levels were related to MECP2 mutation category (i.e., early truncating, gene deletion, late truncating, and missense), specific hotspot mutations (i.e., R106W, R133C, R168X, R255X, R270X, R294X, R306C, and T158M), and disease stage (II through IV). Circulating 4-F4t-NeuroP and 10-F4t-NeuroP were significantly related to (i) the type of MECP2 mutations where higher levels were associated to gene deletions (p ≤ 0.001); (ii) severity of common hotspot MECP2 mutation (large deletions, R168X, R255X, and R270X); (iii) disease stage, where higher concentrations were observed at stage II (p ≤ 0.002); and (iv) deficiency in walking (p ≤ 0.0003). This study indicates the biological significance of 4-F4t-NeuroP and 10-F4t-NeuroP as promising molecules to mark the disease progression and potentially gauge genotype-phenotype associations in RTT.


Subject(s)
Methyl-CpG-Binding Protein 2/genetics , Neuroprostanes/blood , Rett Syndrome/blood , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Male , Middle Aged , Mutation , Nervous System Diseases/blood , Nervous System Diseases/genetics , Rett Syndrome/genetics , Rett Syndrome/pathology , Young Adult
6.
J Neurodev Disord ; 12(1): 26, 2020 09 28.
Article in English | MEDLINE | ID: mdl-32988385

ABSTRACT

BACKGROUND: Rett syndrome (RTT), an X-linked neurodevelopmental rare disease mainly caused by MECP2-gene mutations, is a prototypic intellectual disability disorder. Reversibility of RTT-like phenotypes in an adult mouse model lacking the Mecp2-gene has given hope of treating the disease at any age. However, adult RTT patients still urge for new treatments. Given the relationship between RTT and monoamine deficiency, we investigated mirtazapine (MTZ), a noradrenergic and specific-serotonergic antidepressant, as a potential treatment. METHODS: Adult heterozygous-Mecp2 (HET) female mice (6-months old) were treated for 30 days with 10 mg/kg MTZ and assessed for general health, motor skills, motor learning, and anxiety. Motor cortex, somatosensory cortex, and amygdala were analyzed for parvalbumin expression. Eighty RTT adult female patients harboring a pathogenic MECP2 mutation were randomly assigned to treatment to MTZ for insomnia and mood disorders (mean age = 23.1 ± 7.5 years, range = 16-47 years; mean MTZ-treatment duration = 1.64 ± 1.0 years, range = 0.08-5.0 years). Rett clinical severity scale (RCSS) and motor behavior assessment scale (MBAS) were retrospectively analyzed. RESULTS: In HET mice, MTZ preserved motor learning from deterioration and normalized parvalbumin levels in the primary motor cortex. Moreover, MTZ rescued the aberrant open-arm preference behavior observed in HET mice in the elevated plus-maze (EPM) and normalized parvalbumin expression in the barrel cortex. Since whisker clipping also abolished the EPM-related phenotype, we propose it is due to sensory hypersensitivity. In patients, MTZ slowed disease progression or induced significant improvements for 10/16 MBAS-items of the M1 social behavior area: 4/7 items of the M2 oro-facial/respiratory area and 8/14 items of the M3 motor/physical signs area. CONCLUSIONS: This study provides the first evidence that long-term treatment of adult female heterozygous Mecp2tm1.1Bird mice and adult Rett patients with the antidepressant mirtazapine is well tolerated and that it protects from disease progression and improves motor, sensory, and behavioral symptoms.


Subject(s)
Rett Syndrome , Animals , Disease Models, Animal , Female , Humans , Methyl-CpG-Binding Protein 2/genetics , Mice , Mirtazapine , Retrospective Studies , Rett Syndrome/genetics
7.
Biochim Biophys Acta Mol Basis Dis ; 1866(7): 165793, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32275946

ABSTRACT

Rett Syndrome (RTT) is a rare X-linked neurodevelopmental disorder which affects about 1: 10000 live births. In >95% of subjects RTT is caused by a mutation in Methyl-CpG binding protein-2 (MECP2) gene, which encodes for a transcription regulator with pleiotropic genetic/epigenetic activities. The molecular mechanisms underscoring the phenotypic alteration of RTT are largely unknown and this has impaired the development of therapeutic approaches to alleviate signs and symptoms during disease progression. A defective proteasome biogenesis into two skin primary fibroblasts isolated from RTT subjects harbouring non-sense (early-truncating) MeCP2 mutations (i.e., R190fs and R255X) is herewith reported. Proteasome is the proteolytic machinery of Ubiquitin Proteasome System (UPS), a pathway of overwhelming relevance for post-mitotic cells metabolism. Molecular, transcription and proteomic analyses indicate that MeCP2 mutations down-regulate the expression of one proteasome subunit, α7, and of two chaperones, PAC1 and PAC2, which bind each other in the earliest step of proteasome biogenesis. Furthermore, this molecular alteration recapitulates in neuron-like SH-SY5Y cells upon silencing of MeCP2 expression, envisaging a general significance of this transcription regulator in proteasome biogenesis.


Subject(s)
Dual Specificity Phosphatase 2/genetics , Methyl-CpG-Binding Protein 2/genetics , Rett Syndrome/genetics , Codon, Nonsense/genetics , Fibroblasts/metabolism , Gene Expression Regulation , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/pathology , Humans , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , Primary Cell Culture , Proteasome Endopeptidase Complex/genetics , Proteolysis , Rett Syndrome/pathology , Skin/metabolism , Skin/pathology , Ubiquitin/genetics
8.
J Proteomics ; 210: 103537, 2020 01 06.
Article in English | MEDLINE | ID: mdl-31629059

ABSTRACT

Rett syndrome (RTT) is a leading cause of severe intellectual disability in females, caused by de novo loss-of function mutations in the X-linked methyl-CpG binding protein 2 (MECP2). To better investigate RTT disease progression/pathogenesis animal models of Mecp2 deficiency have been developed. Here, Mecp2 mouse models are employed to investigate the role of protein patterns in RTT. A proteome analysis was carried out in brain tissue from i) Mecp2 deficient mice at the pre-symptomatic and symptomatic stages and, ii) mice in which the disease phenotype was reversed by Mecp2 reactivation. Several proteins were shown to be differentially expressed in the pre-symptomatic (n = 18) and symptomatic (n = 20) mice. Mecp2 brain reactivated mice showed wild-type comparable levels of expression for twelve proteins, mainly related to proteostasis (n = 4) and energy metabolic pathways (n = 4). The remaining ones were found to be involved in redox homeostasis (n = 2), nitric oxide regulation (n = 1), neurodevelopment (n = 1). Ten out of twelve proteins were newly linked to Mecp2 deficiency. Our study sheds light on the relevance of the protein-regulation of main physiological process in the complex mechanisms leading from Mecp2 mutation to the RTT clinical phenotype. SIGNIFICANCE: We performed a proteomic study of a Mecp2stop/y mouse model for Rett syndrome (RTT) at the pre-symptomatic and symptomatic Mecp2 deficient mice stage and for the brain specific reactivated Mecp2 model. Our results reveal major protein expression changes pointing out to defects in proteostasis or energy metabolic pathways other than, to a lesser extent, in redox homeostasis, nitric oxide regulation or neurodevelopment. The Mecp2 mouse rescued model provides the possibility to select target proteins more susceptible to the Mecp2 gene mutation, potential and promising therapeutical targets.


Subject(s)
Brain/metabolism , Methyl-CpG-Binding Protein 2/physiology , Mutation , Oxidative Stress , Proteome/metabolism , Rett Syndrome/etiology , Animals , Biomarkers/metabolism , Disease Models, Animal , Disease Progression , Female , Mice , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Proteome/analysis , Proteomics/methods , Rett Syndrome/pathology
9.
Free Radic Biol Med ; 139: 46-54, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31100476

ABSTRACT

Krabbe disease (KD) is a rare and devastating pediatric leukodystrophy caused by mutations in the galactocerebrosidase (GALC) gene. The disease leads to impaired myelin formation and extensive myelin damage in the brain. Oxidative stress is implicated in the pathogenesis of KD but insofar few information is available. The gray and white matter of the brain are rich in docosahexaenoic acid and adrenic acid respectively and under non-enzymatic oxidative stress, release isoprostanoids, i.e. F4-neuroprostanes (F4-NeuroPs) and F2-dihomo-isoprostanes (F2-dihomo-IsoPs). In this study, the formation of isoprostanoids in brain tissue was investigated in a well-established KD mouse model (twitcher) that recapitulates the human pathology. According to the genotype determinations, three groups of mice were selected: wild-type control mice (n = 13), heterozygotes mice (carriers of GALC mutations, n = 14) and homozygous twitcher mice (n = 13). Measurement of F2-dihomo-IsoP and F4-NeuroP levels were performed on whole brain tissue obtained at day 15 and day 35 of the life cycle. Brain isoprostanoid levels were significantly higher in the twitcher mice compared to the heterozygous and wild-type control mice. However, F2-dihomo-IsoP and F4-NeuroP levels did not differ in brain of day 15 compared to day 35 of the heterozygote mice. Interestingly, isoprostanoid levels were proportionally enhanced with disease severity (F2-dihomo-IsoPs, rho = 0.54; F4-NeuroPs, rho = 0.581; P values ≤ 0.05; n = 13). Our findings are the first to show the key role of polyunsaturated fatty acid oxidative damage to brain grey and white matter in the pathogenesis and progression of KD. This shed new insights on the biochemical indexes of KD progression, and potentially provide information for novel therapeutic targets.


Subject(s)
Galactosylceramidase/genetics , Gray Matter/metabolism , Isoprostanes/metabolism , Leukodystrophy, Globoid Cell/metabolism , Neuroprostanes/metabolism , White Matter/metabolism , Animals , Disease Models, Animal , Docosahexaenoic Acids/metabolism , Fatty Acids, Unsaturated/metabolism , Galactosylceramidase/deficiency , Gene Expression , Gray Matter/pathology , Heterozygote , Homozygote , Humans , Leukodystrophy, Globoid Cell/genetics , Leukodystrophy, Globoid Cell/pathology , Mice , Mutation , Oxidative Stress , Severity of Illness Index , White Matter/pathology
10.
Antioxidants (Basel) ; 7(7)2018 Jul 11.
Article in English | MEDLINE | ID: mdl-29997375

ABSTRACT

Isoprostanoids are a large family of compounds derived from non-enzymatic oxidation of polyunsaturated fatty acids (PUFAs). Unlike other oxidative stress biomarkers, they provide unique information on the precursor of the targeted PUFA. Although they were discovered about a quarter of century ago, the knowledge on the role of key isoprostanoids in the pathogenesis of experimental and human disease models remains limited. This is mainly due to the limited availability of highly purified molecules to be used as a reference standard in the identification of biological samples. The accurate knowledge on their biological relevance is the critical step that could be translated from some mere technical/industrial advances into a reliable biological disease marker which is helpful in deciphering the oxidative stress puzzle related to neurological disorders. Recent research indicates the value of isoprostanoids in predicting the clinical presentation and evolution of the neurological diseases. This review focuses on the relevance of isoprostanoids as mediators and potential biomarkers in neurological diseases, a heterogeneous family ranging from rare brain diseases to major health conditions that could have worldwide socioeconomic impact in the health sector. The current challenge is to identify the preferential biochemical pathways that actually follow the oxidative reactions in the neurological diseases and the consequence of the specific isoprostanes in the underlying pathogenic mechanisms.

11.
BMC Gastroenterol ; 18(1): 57, 2018 May 02.
Article in English | MEDLINE | ID: mdl-29720131

ABSTRACT

BACKGROUND: Rett syndrome (RTT) is a neurological disorder mainly caused by mutations in MeCP2 gene. It has been shown that MeCP2 impairments can lead to cytokine dysregulation due to MeCP2 regulatory role in T-helper and T-reg mediated responses, thus contributing to the pro-inflammatory status associated with RTT. Furthermore, RTT subjects suffer from an intestinal dysbiosis characterized by an abnormal expansion of the Candida population, a known factor responsible for the hyper-activation of pro-inflammatory immune responses. Therefore, we asked whether the intestinal fungal population of RTT subjects might contribute the sub-inflammatory status triggered by MeCP2 deficiency. METHODS: We evaluated the cultivable gut mycobiota from a cohort of 50 RTT patients and 29 healthy controls characterizing the faecal fungal isolates for their virulence-related traits, antifungal resistance and immune reactivity in order to elucidate the role of fungi in RTT's intestinal dysbiosis and gastrointestinal physiology. RESULTS: Candida parapsilosis, the most abundant yeast species in RTT subjects, showed distinct genotypic profiles if compared to healthy controls' isolates as measured by hierarchical clustering analysis from RAPD genotyping. Their phenotypical analysis revealed that RTT's isolates produced more biofilm and were significantly more resistant to azole antifungals compared to the isolates from the healthy controls. In addition, the high levels of IL-1ß and IL-10 produced by peripheral blood mononuclear cells and the mixed Th1/Th17 cells population induced by RTT C. parapsilosis isolates suggest the capacity of these intestinal fungi to persist within the host, being potentially involved in chronic, pro-inflammatory responses. CONCLUSIONS: Here we demonstrated that intestinal C. parapsilosis isolates from RTT subjects hold phenotypic traits that might favour the previously observed low-grade intestinal inflammatory status associated with RTT. Therefore, the presence of putative virulent, pro-inflammatory C. parapsilosis strains in RTT could represent an additional factor in RTT's gastrointestinal pathophysiology, whose mechanisms are not yet clearly understood.


Subject(s)
Candida parapsilosis/isolation & purification , Candida parapsilosis/pathogenicity , Candidiasis/microbiology , Gastroenteritis/microbiology , Rett Syndrome/microbiology , Antifungal Agents/therapeutic use , Candida albicans/genetics , Candida albicans/isolation & purification , Candida parapsilosis/drug effects , Candida parapsilosis/genetics , Candidiasis/drug therapy , Candidiasis/immunology , Cytokines/blood , Drug Resistance, Fungal , Gastroenteritis/drug therapy , Gastroenteritis/immunology , Gastrointestinal Microbiome , Genetic Variation , Genotype , Humans , Interleukin-10/blood , Leukocytes, Mononuclear/metabolism , Methyl-CpG-Binding Protein 2/deficiency , Methyl-CpG-Binding Protein 2/genetics , Mutation , Rett Syndrome/genetics , Rett Syndrome/immunology , Virulence
12.
Free Radic Biol Med ; 115: 278-287, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29233794

ABSTRACT

F4-neuroprostanes (F4-NeuroPs) are non-enzymatic oxidized products derived from docosahexaenoic acid (DHA) and are suggested to be oxidative damage biomarkers of neurological diseases. However, 128 isomers can be formed from DHA oxidation and among them, 4(RS)-4-F4t-NeuroP (4-F4t-NeuroP) and 10(RS)-10-F4t-NeuroP (10-F4t-NeuroP) are the most studied. Here, we report the identification and the clinical relevance of 4-F4t-NeuroP and 10-F4t-NeuroP in plasma of four different neurological diseases, including multiple sclerosis (MS), autism spectrum disorders (ASD), Rett syndrome (RTT), and Down syndrome (DS). The identification and the optimization of the method were carried out by gas chromatography/negative-ion chemical ionization tandem mass spectrometry (GC/NICI-MS/MS) using chemically synthesized 4-F4t-NeuroP and 10-F4t-NeuroP standards and in oxidized DHA liposome. Both 4-F4t-NeuroP and 10-F4t-NeuroP were detectable in all plasma samples from MS (n = 16), DS (n = 16), ASD (n = 9) and RTT (n = 20) patients. While plasma 10-F4t-NeuroP content was significantly higher in patients of all diseases as compared to age and gender matched healthy control subjects (n = 61), 4-F4t-NeuroP levels were significantly higher in MS and RTT as compared to healthy controls. Significant positive relationships were observed between relative disease severity and 4-F4t-NeuroP levels (r = 0.469, P <0.0001), and 10-F4t-NeuroP levels (r = 0.757, P < 0.0001). The study showed that the plasma amount ratio of 10-F4t-NeuroP to 4-F4t-NeuroP and the plasma amount as individual isomer can be used to discriminate between different brain diseases. Overall, by comparing the different types of disease, our plasma data indicates that 4-F4t-NeuroP and 10-F4t -NeuroP: i) are biologically synthesized in vivo and circulated, ii) are related to clinical severity of neurological diseases, iii) are useful to identify shared pathogenetic pathways in distinct brain diseases, and iv) appears to be distinctive for different neurological conditions, thus representing potentially new biological disease markers. Our data strongly suggest that in vivo DHA oxidation follows preferential chemical rearrangements according to different brain diseases.


Subject(s)
Autism Spectrum Disorder/metabolism , Down Syndrome/metabolism , Multiple Sclerosis/metabolism , Neuroprostanes/blood , Rett Syndrome/metabolism , Adolescent , Adult , Autism Spectrum Disorder/diagnosis , Biomarkers/blood , Child , Child, Preschool , Diagnosis, Differential , Docosahexaenoic Acids/metabolism , Down Syndrome/diagnosis , Female , Humans , Infant , Male , Middle Aged , Multiple Sclerosis/diagnosis , Oxidation-Reduction , Rett Syndrome/diagnosis , Tandem Mass Spectrometry , Young Adult
13.
Mediators Inflamm ; 2017: 9467819, 2017.
Article in English | MEDLINE | ID: mdl-28592917

ABSTRACT

Rett syndrome (RTT) is a rare neurodevelopmental disorder usually caused by mutations in the X-linked gene methyl-CpG-binding protein 2 (MECP2). Several Mecp2 mutant mouse lines have been developed recapitulating part of the clinical features. In particular, Mecp2-308 female heterozygous mice, bearing a truncating mutation, are a validated model of the disease. While recent data suggest a role for inflammation in RTT, little information on the inflammatory status in murine models of the disease is available. Here, we investigated the inflammatory status by proteomic 2-DE/MALDI-ToF/ToF analyses in symptomatic Mecp2-308 female mice. Ten differentially expressed proteins were evidenced in the Mecp2-308 mutated plasma proteome. In particular, 5 positive acute-phase response (APR) proteins increased (i.e., kininogen-1, alpha-fetoprotein, mannose-binding protein C, alpha-1-antitrypsin, and alpha-2-macroglobulin), and 3 negative APR reactants were decreased (i.e., serotransferrin, albumin, and apolipoprotein A1). CD5 antigen-like and vitamin D-binding protein, two proteins strictly related to inflammation, were also changed. These results indicate for the first time a persistent unresolved inflammation of unknown origin in the Mecp2-308 mouse model.


Subject(s)
Inflammation/immunology , Inflammation/metabolism , Methyl-CpG-Binding Protein 2/metabolism , Rett Syndrome/immunology , Rett Syndrome/metabolism , Animals , Disease Models, Animal , Female , Methyl-CpG-Binding Protein 2/genetics , Mice , Proteomics
14.
Microbiome ; 5(1): 24, 2017 02 22.
Article in English | MEDLINE | ID: mdl-28222761

ABSTRACT

BACKGROUND: Autism spectrum disorders (ASDs) are neurodevelopmental conditions characterized by social and behavioural impairments. In addition to neurological symptoms, ASD subjects frequently suffer from gastrointestinal abnormalities, thus implying a role of the gut microbiota in ASD gastrointestinal pathophysiology. RESULTS: Here, we characterized the bacterial and fungal gut microbiota in a cohort of autistic individuals demonstrating the presence of an altered microbial community structure. A fraction of 90% of the autistic subjects were classified as severe ASDs. We found a significant increase in the Firmicutes/Bacteroidetes ratio in autistic subjects due to a reduction of the Bacteroidetes relative abundance. At the genus level, we observed a decrease in the relative abundance of Alistipes, Bilophila, Dialister, Parabacteroides, and Veillonella in the ASD cohort, while Collinsella, Corynebacterium, Dorea, and Lactobacillus were significantly increased. Constipation has been then associated with different bacterial patterns in autistic and neurotypical subjects, with constipated autistic individuals characterized by high levels of bacterial taxa belonging to Escherichia/Shigella and Clostridium cluster XVIII. We also observed that the relative abundance of the fungal genus Candida was more than double in the autistic than neurotypical subjects, yet due to a larger dispersion of values, this difference was only partially significant. CONCLUSIONS: The finding that, besides the bacterial gut microbiota, also the gut mycobiota contributes to the alteration of the intestinal microbial community structure in ASDs opens the possibility for new potential intervention strategies aimed at the relief of gastrointestinal symptoms in ASDs.


Subject(s)
Autism Spectrum Disorder/microbiology , Feces/microbiology , Gastrointestinal Microbiome , Gastrointestinal Tract/physiopathology , Adolescent , Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/etiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Child , Child, Preschool , Clostridium/genetics , Clostridium/isolation & purification , Constipation , Female , Firmicutes/genetics , Firmicutes/isolation & purification , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Gastrointestinal Diseases/microbiology , Gastrointestinal Tract/microbiology , Humans , Lactobacillus/genetics , Lactobacillus/isolation & purification , Male , Mycobiome
15.
J Proteomics ; 154: 128-133, 2017 02 10.
Article in English | MEDLINE | ID: mdl-28062374

ABSTRACT

Rett syndrome (RTT) is a severe genetic disorder resulting from mutations in the X-linked methyl-CpG-binding protein 2 (MECP2) gene. Recently, a zebrafish carrying a mecp2-null mutation has been developed with the resulting phenotypes exhibiting defective sensory and thigmotactic responses, and abnormal motor behavior reminiscent of the human disease. Here, we performed a proteomic analysis to examine protein expression changes in mecp2-null vs. wild-type larvae and adult zebrafish. We found a total of 20 proteins differentially expressed between wild-type and mutant zebrafish, suggesting skeletal and cardiac muscle functional defects, a stunted glycolysis and depleted energy availability. This molecular evidence is directly linked to the mecp2-null zebrafish observed phenotype. In addition, we identified changes in expression of proteins critical for a proper redox balance, suggesting an enhanced oxidative stress, a phenomenon also documented in human patients and RTT murine models. The molecular alterations observed in the mecp2-null zebrafish expand our knowledge on the molecular cascade of events that lead to the RTT phenotype. BIOLOGICAL SIGNIFICANCE: We performed a proteomic study of a non-mammalian vertebrate model (zebrafish, Danio rerio) for Rett syndrome (RTT) at larval and adult stages of development. Our results reveal major protein expression changes pointing out to defects in energy metabolism, redox status imbalance, and muscle function, both skeletal and cardiac. Our molecular analysis grants the mecp2-null zebrafish as a valuable RTT model, triggering new research approaches for a better understanding of the RTT pathogenesis and phenotype expression. This non-mammalian vertebrate model of RTT strongly suggests a broad impact of Mecp2 dysfunction.


Subject(s)
Methyl-CpG-Binding Protein 2/genetics , Rett Syndrome/genetics , Animals , Disease Models, Animal , Energy Metabolism/genetics , Larva/chemistry , Muscles/physiology , Mutation , Oxidative Stress/genetics , Phenotype , Proteins/analysis , Proteins/physiology , Proteomics/methods , Zebrafish
16.
Inflamm Res ; 66(3): 269-280, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27900411

ABSTRACT

BACKGROUND: Mutations in the cyclin-dependent kinase-like 5 gene cause a clinical variant of Rett syndrome (CDKL5-RTT). A role for the acute-phase response (APR) is emerging in typical RTT caused by methyl-CpG-binding protein 2 gene mutations (MECP2-RTT). No information is, to date, available on the inflammatory protein response in CDKL5-RTT. We evaluated, for the first time, the APR protein response in CDKL5-RTT. METHODS: Protein patterns in albumin- and IgG-depleted plasma proteome from CDKL5-RTT patients were evaluated by two-dimensional gel electrophoresis/mass spectrometry. The resulting data were related to circulating cytokines and compared to healthy controls or MECP2-RTT patients. The effects of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) were evaluated. RESULTS: CDKL5-RTT mutations resulted in a subclinical attenuated inflammation, specifically characterized by an overexpression of the complement component C3 and CD5 antigen-like, both strictly related to the inflammatory response. Cytokine dysregulation featuring a bulk increase of anti-inflammatory cytokines, predominantly IL-10, could explain the unchanged erythrocyte sedimentation rate and atypical features of inflammation in CDKL5-RTT. Omega-3 PUFAs were able to counterbalance the pro-inflammatory status. CONCLUSION: For the first time, we revealed a subclinical smouldering inflammation pattern in CDKL5-RTT consisting in the coexistence of an atypical APR coupled with a dysregulated cytokine response.


Subject(s)
Acute-Phase Reaction/immunology , Cytokines/immunology , Rett Syndrome/immunology , Spasms, Infantile/immunology , Acute-Phase Reaction/genetics , Acute-Phase Reaction/metabolism , Adolescent , Blood Proteins/immunology , Blood Proteins/metabolism , Child , Child, Preschool , Cytokines/blood , Dietary Supplements , Epileptic Syndromes , Fatty Acids, Omega-3/pharmacology , Female , Humans , Infant , Methyl-CpG-Binding Protein 2/genetics , Protein Serine-Threonine Kinases/genetics , Rett Syndrome/genetics , Rett Syndrome/metabolism , Spasms, Infantile/genetics , Spasms, Infantile/metabolism
17.
Free Radic Res ; 50(12): 1422-1431, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27785947

ABSTRACT

Down syndrome (DS, trisomy 21) is the leading cause of chromosomal-related intellectual disability. At an early age, adults with DS develop with the neuropathological hallmarks of Alzheimer's disease, associated with a chronic oxidative stress. To investigate if non-protein bound iron (NPBI) can contribute to building up a pro-oxidative microenvironment, we evaluated NPBI in both plasma and erythrocytes from DS and age-matched controls, together with in vivo markers of lipid peroxidation (F2-isoprostanes, F2-dihomo-isoprostanes, F4-neuroprostanes) and in vitro reactive oxygen species (ROS) formation in erythrocytes. The serum iron panel and uric acid were also measured. Second, we explored possible correlation between NPBI, lipid peroxidation and cognitive performance. Here, we report NPBI increase in DS, which correlates with increased serum ferritin and uric acid. High levels of lipid peroxidation markers and intraerythrocyte ROS formations were also reported. Furthermore, the scores of Raven's Colored Progressive Matrices (RCPM) test, performed as a measure of current cognitive function, are inversely related to NPBI, serum uric acid, and ferritin. Likewise, ROS production, F2-isoprostanes, and F4-neuroprostanes were also inversely related to cognitive performance, whereas serum transferrin positively correlated to RCPM scores. Our data reveal that increased availability of free redox-active iron, associated with enhanced lipid peroxidation, may be involved in neurodegeneration and cognitive decline in DS. In this respect, we propose chelation therapy as a potential preventive/therapeutic tool in DS.


Subject(s)
Cognitive Dysfunction/genetics , Cognitive Dysfunction/metabolism , Down Syndrome/complications , Iron/metabolism , Lipid Peroxidation/genetics , Humans , Oxidative Stress
18.
Microbiome ; 4(1): 41, 2016 07 30.
Article in English | MEDLINE | ID: mdl-27473171

ABSTRACT

BACKGROUND: The human gut microbiota directly affects human health, and its alteration can lead to gastrointestinal abnormalities and inflammation. Rett syndrome (RTT), a progressive neurological disorder mainly caused by mutations in MeCP2 gene, is commonly associated with gastrointestinal dysfunctions and constipation, suggesting a link between RTT's gastrointestinal abnormalities and the gut microbiota. The aim of this study was to evaluate the bacterial and fungal gut microbiota in a cohort of RTT subjects integrating clinical, metabolomics and metagenomics data to understand if changes in the gut microbiota of RTT subjects could be associated with gastrointestinal abnormalities and inflammatory status. RESULTS: Our findings revealed the occurrence of an intestinal sub-inflammatory status in RTT subjects as measured by the elevated values of faecal calprotectin and erythrocyte sedimentation rate. We showed that, overall, RTT subjects harbour bacterial and fungal microbiota altered in terms of relative abundances from those of healthy controls, with a reduced microbial richness and dominated by microbial taxa belonging to Bifidobacterium, several Clostridia (among which Anaerostipes, Clostridium XIVa, Clostridium XIVb) as well as Erysipelotrichaceae, Actinomyces, Lactobacillus, Enterococcus, Eggerthella, Escherichia/Shigella and the fungal genus Candida. We further observed that alterations of the gut microbiota do not depend on the constipation status of RTT subjects and that this dysbiotic microbiota produced altered short chain fatty acids profiles. CONCLUSIONS: We demonstrated for the first time that RTT is associated with a dysbiosis of both the bacterial and fungal component of the gut microbiota, suggesting that impairments of MeCP2 functioning favour the establishment of a microbial community adapted to the costive gastrointestinal niche of RTT subjects. The altered production of short chain fatty acids associated with this microbiota might reinforce the constipation status of RTT subjects and contribute to RTT gastrointestinal physiopathology.


Subject(s)
Bacteria/classification , Dysbiosis/microbiology , Fungi/classification , Gastrointestinal Microbiome/physiology , Intestines/microbiology , Rett Syndrome/microbiology , Rett Syndrome/physiopathology , Bacteria/genetics , Biodiversity , Constipation/pathology , Fatty Acids/metabolism , Fungi/genetics , Humans , Inflammation/pathology , Metabolomics/methods , Metagenomics/methods , Methyl-CpG-Binding Protein 2/genetics , Rett Syndrome/genetics
19.
Proteomics Clin Appl ; 10(11): 1103-1112, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27246309

ABSTRACT

PURPOSE: A role for inflammation and oxidative stress is reported in autism spectrum disorders (ASDs). Here, we tested possible changes in expression and/or oxidative status for plasma proteins in subjects with ASDs. EXPERIMENTAL DESIGN: To evaluate protein expression and protein adducts of lipid peroxidation-derived aldehyde, analysis of plasma proteins was performed in 30 subjects with ASDs and compared with 30 healthy controls with typical development, using a proteomic approach. RESULTS: Significant changes were evidenced for a total of 12 proteins. Of these, ten were identified as proteins involved in the acute inflammatory response including alpha-2-macroglobulin, alpha-1-antitrypsin, haptoglobin, fibrinogen, serum transferrin, prealbumin, apolipoprotein A-I apolipoprotein A-IV, apolipoprotein J, and serum albumin. In addition, significant changes occurred for two immunoglobulins alpha and gamma chains. CONCLUSIONS AND CLINICAL RELEVANCE: Our present data indicate that an inflammatory response, coupled with increased lipid peroxidation, is present in subjects with ASDs. This information can provide new insight into the identification of potential plasma protein biomarkers in autism.


Subject(s)
Autism Spectrum Disorder/pathology , Blood Proteins/metabolism , Proteomics , Acute-Phase Proteins/metabolism , Adolescent , Aldehydes/chemistry , Autism Spectrum Disorder/metabolism , Blood Cell Count , Blood Proteins/chemistry , Case-Control Studies , Child , Electrophoresis, Gel, Two-Dimensional , Female , Humans , Immunoglobulins/metabolism , Lipid Peroxidation , Male , Protein Processing, Post-Translational , Tandem Mass Spectrometry
20.
PLoS One ; 11(3): e0150101, 2016.
Article in English | MEDLINE | ID: mdl-26930212

ABSTRACT

Rett syndrome (RTT) and MECP2 duplication syndrome (MDS) are neurodevelopmental disorders caused by alterations in the methyl-CpG binding protein 2 (MECP2) gene expression. A relationship between MECP2 loss-of-function mutations and oxidative stress has been previously documented in RTT patients and murine models. To date, no data on oxidative stress have been reported for the MECP2 gain-of-function mutations in patients with MDS. In the present work, the pro-oxidant status and oxidative fatty acid damage in MDS was investigated (subjects n = 6) and compared to RTT (subjects n = 24) and healthy condition (subjects n = 12). Patients with MECP2 gain-of-function mutations showed increased oxidative stress marker levels (plasma non-protein bound iron, intraerythrocyte non-protein bound iron, F2-isoprostanes, and F4-neuroprostanes), as compared to healthy controls (P ≤ 0.05). Such increases were similar to those observed in RTT patients except for higher plasma F2-isoprostanes levels (P < 0.0196). Moreover, plasma levels of F2-isoprostanes were significantly correlated (P = 0.0098) with the size of the amplified region. The present work shows unique data in patients affected by MDS. For the first time MECP2 gain-of-function mutations are indicated to be linked to an oxidative damage and related clinical symptoms overlapping with those of MECP2 loss-of-function mutations. A finely tuned balance of MECP2 expression appears to be critical to oxidative stress homeostasis, thus shedding light on the relevance of the redox balance in the central nervous system integrity.


Subject(s)
Fatty Acids/metabolism , Mental Retardation, X-Linked/metabolism , Oxidative Stress/genetics , Reactive Oxygen Species/metabolism , Rett Syndrome/metabolism , Adolescent , Child , Child, Preschool , F2-Isoprostanes/metabolism , Female , Humans , Male , Mental Retardation, X-Linked/genetics , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Mutation , Rett Syndrome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...