Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Front Chem ; 10: 888750, 2022.
Article in English | MEDLINE | ID: mdl-35586266

ABSTRACT

Rechargeable lithium-sulfur (Li-S) batteries are the most promising next-generation energy storage system owing to their high energy density and low cost. Despite the increasing number of publications on the Li-S technology, the number of studies on real prototype cells is rather low. Furthermore, novel concepts developed using small lab cells cannot simply be transferred to high-energy cell prototypes due to the fundamental differences. The electrolyte and lithium anode excess used in small lab cells is known to have a huge impact on the cycle life, capacity, and rate capability of the Li-S system. This work analyses the performance of pouch cell prototypes demonstrating the potential and hurdles of the technology. The impact of electrolyte variations and the sulfur cathode loading are studied. The energy density of Li-S pouch cell is improved up to 436 Wh kg-1 by a combination of different approaches related to cell manufacturing, sulfur cathode optimization, and electrolyte amount adjustment.

2.
ChemSusChem ; 14(21): 4690-4696, 2021 Nov 04.
Article in English | MEDLINE | ID: mdl-34339584

ABSTRACT

In recent decades, rechargeable Mg batteries (RMBs) technologies have attracted much attention because the use of thin Mg foil anodes may enable development of high-energy-density batteries. One of the most critical challenges for RMBs is finding suitable electrolyte solutions that enable efficient and reversible Mg cells operation. Most RMB studies concentrate on the development of novel electrolyte systems, while only few studies have focused on the practical feasibility of using pure metallic Mg as the anode material. Pure Mg metal anodes have been demonstrated to be useful in studying the fundamentals of nonaqueous Mg electrochemistry. However, pure Mg metal may not be suitable for mass production of ultrathin foils (<100 microns) due to its limited ductility. The metals industry overcomes this problem by using ductile Mg alloys. Herein, the feasibility of processing ultrathin Mg anodes in electrochemical cells was demonstrated by using AZ31 Mg alloys (3 % Al; 1 % Zn). Thin-film Mg AZ31 anodes presented reversible Mg dissolution and deposition behavior in complex ethereal Mg electrolytes solutions that was comparable to that of pure Mg foils. Moreover, it was demonstrated that secondary Mg battery prototypes comprising ultrathin AZ31 Mg alloy anodes (≈25 µm thick) and Mgx Mo6 S8 Chevrel-phase cathodes exhibited cycling performance equal to that of similar cells containing thicker pure Mg foil anodes. The possibility of using ultrathin processable Mg metal anodes is an important step in the realization of rechargeable Mg batteries.

3.
Macromol Rapid Commun ; 39(21): e1800529, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30199132

ABSTRACT

Sulfur-containing polymers and poly(ionic liquid)s are emerging macromolecules with unique properties and applications. This article shows the first integration of these two polymer families, leading to materials with a unique combination of properties. The synthetic strategy toward sulfur-containing poly(ionic liquid)s involves first the copolymerization of elemental sulfur with 4-vinylbenzyl chloride and subsequent quaternization of the alkyl chloride group using N-methyl imidazole. The synthetic pathway is completed by the anion exchange reaction of the poly(sulfur-co-4-vinylbenzyl imidazolium chloride) by a sulphonamide anion. The obtained polymers are fully characterized by NMR, FTIR, SEC, DSC, and TGA. The sulfur poly(ionic liquid)s combine some properties related to its poly(ionic liquid) nature, such as anion-dependent solubility (water vs organic solvents) and high ionic conductivity as well as properties related to its sulfur content, such as redox activity.


Subject(s)
Ionic Liquids/chemistry , Polymers/chemistry , Sulfur/chemistry , Molecular Structure , Oxidation-Reduction , Polymers/chemical synthesis , Solubility
4.
ACS Appl Mater Interfaces ; 10(11): 9216-9219, 2018 Mar 21.
Article in English | MEDLINE | ID: mdl-29509397

ABSTRACT

2,5-Di- tert-butyl-1,4-bis(2-methoxyethoxy)benzene (DBBB) is studied as a redox shuttle additive for overcharge protection for a 1.5 Ah graphite/C-LFP lithium-ion pouch cell for the first time. The electrochemical performance demonstrated that the protecting additive remains inert during the extended standard cycling for 4000 cycles. When a 100% overcharge is introduced in the charging protocol, the baseline cell fails rapidly during the first abusive event, whereas the cell containing DBBB additive withstands 700 overcharge cycles with 87% capacity retention and no gas evolution or cell swelling was observed. It is the first time the effectiveness of the DBBB as overcharge protection additive in a large pouch cell format is demonstrated.

5.
ACS Macro Lett ; 7(4): 419-424, 2018 Apr 17.
Article in English | MEDLINE | ID: mdl-35619336

ABSTRACT

Redox polymers with high energy storage capacity are searched in order to diminish the weight to the actual batteries. Poly(anthraquinonyl sulfide) PAQS is a popular redox polymer which has shown a high performance cathode for lithium, sodium and magnesium batteries. Although PAQS cathodes show high cycling stability it has a relatively low theoretical specific capacity of 225 mAh/g. In this paper we show the synthesis and characterization of new poly(anthraquinonyl sulfides) PAQxS in an attempt to improve the specific capacity of PAQS. Thus, a series of PAQxS polymers with different polysulfide segment lengths (x between 2 and 9 sulfur atoms) have been synthesized in high yields by reacting in situ formed sodium polysulfides with 1,5-dicholoroanthraquinone. The poly(anthraquinonyl sulfides) powders were characterized by ATR-FTIR, solid state 13C NMR for the organic part and Raman spectroscopy for the chalcogenide part. This characterization confirmed the chemical structure of the PAQxS based on an anthraquinone moiety bind together by polysulfide segments. The electrochemical characterization showed a dual reversible redox mechanism associated with both the anthraquinone and polysulfide electrochemistry. Finally, lithium coin cell battery test of the PAQxS redox polymers as cathodes indicated that the capacity of poly(anthraquinonyl sulfides) showed very high experimental initial capacity values above 600 mAh/g, less capacity loss than sulfur cathodes, and higher steady state capacity than PAQS.

6.
ChemSusChem ; 9(24): 3419-3425, 2016 Dec 20.
Article in English | MEDLINE | ID: mdl-27910220

ABSTRACT

Lithium-sulfur batteries are among the most promising next-generation battery systems due to the high capacity of sulfur as cathodic material. Beyond its interesting intrinsic properties, sulfur possesses a very low conductivity and complex electrochemistry, which involves the high solubility of the lithium sulfides in the electrolyte. These two characteristics are at the core of a series of limitations of its performance as active cathode material, which leads to batteries with low cyclability. Recently, inverse vulcanized sulfur was shown to retain capacity far better than elemental sulfur, leading to batteries with excellent cyclability. Nevertheless, the diene co-monomers used so far in the inverse vulcanization process are man-made molecules. Herein, a tentative work on exploring inverse vulcanization using two naturally available monomers, diallyl sulfide and myrcene, is presented. The inverse vulcanization of sulfur was successfully completed, and the resulting polymers were characterized by FTIR, NMR spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. Afterwards these polymers were tested as cathodic materials in lithium-sulfur cells. The sulfur-natural dienes materials exhibited high capacity at different C rates and high lifetime over 200 cycles with very high capacity retention at a moderate C rate of C/5. Altogether, these materials made from inexpensive and abundant chemicals are an excellent option as sustainable materials for electrochemical energy storage.


Subject(s)
Alkenes/chemistry , Electric Power Supplies , Lithium/chemistry , Sulfur/chemistry , Electrochemistry , Electrodes , Polymers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL