Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 12(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38927444

ABSTRACT

Abnormal skin healing resulting in chronic wounds or hypertrophic scarring remains a major healthcare burden. Here, the antifibrotic angiotensin II type 2 receptor (AT2R) signaling pathway was modulated to determine its impact on cutaneous wound healing. Balb/c mice received two splinted full-thickness wounds. Topical treatments with the selective AT2R agonist compound 21 (C21) and/or selective antagonist PD123319 or saline vehicle were administered until sacrifice on post-wounding days 7 or 10. The rate of wound re-epithelialization was accelerated by PD123319 and combination treatments. In vitro, C21 significantly reduced human fibroblast migration. C21 increased both collagen and vascular densities at days 7 and 10 post-wounding and collagen I:III ratio at day 10, while PD123319 and combination treatments decreased them. Genes associated with regeneration and repair were upregulated by C21, while PD123319 treatment increased the expression of genes associated with inflammation and immune cell chemotaxis. C21 treatment reduced wound total leukocyte and neutrophil staining densities, while PD123319 increased these and macrophage densities. Overall, AT2R activation with C21 yields wounds that mature more quickly with structural, cellular, and gene expression profiles more closely approximating unwounded skin. These findings support AT2R signal modulation as a potential therapeutic target to improve skin quality during wound healing.

2.
Sci Rep ; 14(1): 7076, 2024 03 25.
Article in English | MEDLINE | ID: mdl-38528089

ABSTRACT

Fibrosis is a destructive, end-stage disease process. In the skin, it is associated with systemic sclerosis and scarring with considerable health burden. Ketotifen is a clinical antihistamine and mast cell stabilizer. Studies have demonstrated mast cell-dependent anti-fibrotic effects of ketotifen but direct effects on fibroblasts have not been determined. Human dermal fibroblasts were treated with pro-fibrotic transforming growth factor-ß1 (TGFß) followed by ketotifen or control treatments to determine direct effects on fibrotic fibroblasts. Ketotifen impaired TGFß-induced α-smooth muscle actin gene and protein responses and decreased cytoskeletal- and contractility-associated gene responses associated with fibrosis. Ketotifen reduced Yes-associated protein phosphorylation, transcriptional coactivator with PDZ binding motif transcript and protein levels, and phosphorylation of protein kinase B. In a fibroblast-populated collagen gel contraction assay, ketotifen reduced the contractile activity of TGFß-activated fibroblasts. In a murine model of bleomycin-induced skin fibrosis, collagen density and dermal thickness were significantly decreased in ketotifen-treated mice supporting in vitro findings. These results support a novel, direct anti-fibrotic activity of ketotifen, reducing pro-fibrotic phenotypic changes in fibroblasts and reducing collagen fibres in fibrotic mouse skin. Together, these findings suggest novel therapeutic potential and a novel mechanism of action for ketotifen in the context of fibrosis.


Subject(s)
Ketotifen , Scleroderma, Systemic , Humans , Mice , Animals , Ketotifen/pharmacology , Ketotifen/metabolism , Ketotifen/therapeutic use , Fibrosis , Skin/metabolism , Scleroderma, Systemic/metabolism , Collagen/metabolism , Fibroblasts/metabolism , Bleomycin/pharmacology , Transforming Growth Factor beta1/metabolism , Cells, Cultured , Transforming Growth Factor beta/metabolism
3.
Front Cell Dev Biol ; 10: 856243, 2022.
Article in English | MEDLINE | ID: mdl-35756999

ABSTRACT

Mast cells are specialized, tissue resident, immune effector cells able to respond to a wide range of stimuli. MCs are involved in the regulation of a variety of physiological functions, including vasodilation, angiogenesis and pathogen elimination. In addition, MCs recruit and regulate the functions of many immune cells such as dendritic cells, macrophages, T cells, B cells and eosinophils through their selective production of multiple cytokines and chemokines. MCs generate and release multi-potent molecules, such as histamine, proteases, prostanoids, leukotrienes, heparin, and many cytokines, chemokines, and growth factors through both degranulation dependent and independent pathways. Recent studies suggested that metabolic shifts dictate the activation and granule content secretion by MCs, however the metabolic signaling promoting these events is at its infancy. Lipid metabolism is recognized as a pivotal immunometabolic regulator during immune cell activation. Peroxisomes are organelles found across all eukaryotes, with a pivotal role in lipid metabolism and the detoxification of reactive oxygen species. Peroxisomes are one of the emerging axes in immunometabolism. Here we identified the peroxisome as an essential player in MCs activation. We determined that lack of functional peroxisomes in murine MCs causes a significant reduction of interleukin-6, Tumor necrosis factor and InterleukinL-13 following immunoglobulin IgE-mediated and Toll like receptor 2 and 4 activation compared to the Wild type (WT) BMMCs. We linked these defects in cytokine release to defects in free fatty acids homeostasis. In conclusion, our study identified the importance of peroxisomal fatty acids homeostasis in regulating mast cell-mediated immune functions.

4.
J Innate Immun ; 14(4): 320-334, 2022.
Article in English | MEDLINE | ID: mdl-34839285

ABSTRACT

Mast cells (MCs) are key mediators of allergic inflammation through the activation of cross-linked immunoglobulin E (IgE) bound to the high-affinity IgE receptor (FcϵRI) on the cell surface, leading to the release of biologically potent mediators, either from preformed granules or newly synthesized. Pharmacological inhibitors have been developed to target a key signaling protein phosphatase in this pathway, calcineurin, yet there is a lack of genetic and definitive evidence for the various isoforms of calcineurin subunits in FcϵRI-mediated responses. In this study, we hypothesized that deficiency in the calcineurin Aα isoform will result in a decreased allergic immune response by the MCs. In a model of passive cutaneous anaphylaxis, there was a reduction in vascular permeability in MC-deficient mouse tissues reconstituted with calcineurin subunit A (CnAα) gene-knockout (CnAα-/-) MCs, and in vitro experiments identified a significant reduction in release of preformed mediators from granules. Furthermore, released levels of de novo synthesized cytokines were reduced upon FcϵRI activation of CnAα-/- MCs in vitro. Characterizing the mechanisms associated with this deficit response, we found a significant impairment of nuclear factor of kappa light polypeptide gene enhancer in B cell phosphorylation and impaired nuclear factor kappa-light-chain-enhancer of activated B-cell inhibitor alpha (NF-κB) activation. Thus, we concluded that CnAα contributes to the release of preformed mediators and newly synthesized mediators from FcϵRI-mediated activation of MCs, and this regulation includes NF-κB signaling.


Subject(s)
Hypersensitivity , Mast Cells , Animals , Calcineurin/metabolism , Cell Degranulation , Immunoglobulin E/metabolism , Inflammation/metabolism , Mice , NF-kappa B/metabolism , Receptors, IgE/metabolism
5.
Front Physiol ; 12: 727451, 2021.
Article in English | MEDLINE | ID: mdl-34512395

ABSTRACT

Systemic sclerosis (SSc) is a chronic debilitating idiopathic disorder, characterized by deposition of excessive extracellular matrix (ECM) proteins such as collagen which leads to fibrosis of the skin and other internal organs. During normal tissue repair and remodeling, the accumulation and turnover of ECM proteins are tightly regulated by the interaction of matrix metalloproteinases (MMPs) and endogenous tissue inhibitors of metalloproteinases (TIMPs). SSc is associated with dysregulation of the activity of these proteolytic and inhibitory proteins within the tissue microenvironment, tipping the balance toward fibrosis. The resultant ECM accumulation further perpetuates tissue stiffness and decreased function, contributing to poor clinical outcomes. Understanding the expression and function of these endogenous enzymes and inhibitors within specific tissues is therefore critical to the development of therapies for SSc. This brief review describes recent advances in our understanding of the functions and mechanisms of ECM remodeling by metalloproteinases and their inhibitors in the skin and lungs affected in SSc. It highlights recent progress on potential candidates for intervention and therapeutic approaches for treating SSc fibrosis.

6.
Int J Mol Sci ; 20(17)2019 Aug 30.
Article in English | MEDLINE | ID: mdl-31480219

ABSTRACT

Mast cells are well accepted as important sentinel cells for host defence against selected pathogens. Their location at mucosal surfaces and ability to mobilize multiple aspects of early immune responses makes them critical contributors to effective immunity in several experimental settings. However, the interactions of mast cells with viruses and pathogen products are complex and can have both detrimental and positive impacts. There is substantial evidence for mast cell mobilization and activation of effector cells and mobilization of dendritic cells following viral challenge. These cells are a major and under-appreciated local source of type I and III interferons following viral challenge. However, mast cells have also been implicated in inappropriate inflammatory responses, long term fibrosis, and vascular leakage associated with viral infections. Progress in combating infection and boosting effective immunity requires a better understanding of mast cell responses to viral infection and the pathogen products and receptors we can employ to modify such responses. In this review, we outline some of the key known responses of mast cells to viral infection and their major responses to pathogen products. We have placed an emphasis on data obtained from human mast cells and aim to provide a framework for considering the complex interactions between mast cells and pathogens with a view to exploiting this knowledge therapeutically. Long-lived resident mast cells and their responses to viruses and pathogen products provide excellent opportunities to modify local immune responses that remain to be fully exploited in cancer immunotherapy, vaccination, and treatment of infectious diseases.


Subject(s)
Bacteria/immunology , Mast Cells/immunology , Mast Cells/virology , Viruses/immunology , Animals , Culicidae/virology , Humans , Immunity , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL