Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Insects ; 13(10)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36292909

ABSTRACT

The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, transmits 'Candidatus Liberibacter asiaticus' (CLas), a phloem-limited bacterium associated with the severe Asian form of huanglongbing (HLB), and the most destructive disease of citrus. The pathogen and the psyllid, both of South Asian origin, are now widespread in citrus regions of Asia and the Americas. There is no cure for the disease. Application of synthetic pesticides, in some instances more frequently than fortnightly, to minimise incidence of ACP in citrus orchards, has not prevented inevitable impacts of the disease in regions of Asia where CLas is present. Despite the inevitable spread of the disease, significant progress has been made in Sarawak since the mid-1990s towards effectively implementing integrated pest management (IPM) programs for stemming the impact of the disease and detrimental consequences of over-reliance on synthetic pesticides. Growers are encouraged to plant pathogen-free trees, remove diseased trees, monitor incidence of the psyllid, and to use pesticides judiciously to reduce their detrimental impacts on natural enemies. Knowledge has been enhanced through research on seasonal incidence of the psyllid, use of mineral oils, development of protocols and iodine−starch test kits for detecting infected trees, PCR for confirming the presence of CLas in symptomatic leaves, methods for monitoring incidence the psyllid, and training extension staff and growers. However, major impediments to increasing the average longevity of trees beyond <5 years in poorly managed orchards, based on marcotting (air layering), and >12 years in well-managed orchards, based on pathogen-free trees, still need to be addressed. These include grower knowledge, marcotting, aggressive marketing of synthetic pesticides, high prices of mineral oils, spray application procedures, and better reliance on natural enemies of the psyllid.

2.
Insects ; 12(9)2021 Aug 28.
Article in English | MEDLINE | ID: mdl-34564212

ABSTRACT

Diaphorina citri Kuwayama transmits a destructive citrus disease caused by a fastidious bacterium 'Candidatus Liberibacter asiaticus' (CLas) designated as Huanglongbing (HLB) which posed a risk of detrimental threat to the Malaysian citrus industry. All D. citri life stages show a lumped habit on young flushes and its population fluctuations was closely related to accessibility of young flushes. The study aimed to investigate if the appearance of young flush shoots on citrus influences ACP population fluctuation and if horticultural mineral oil (HMO) could reduce spread of HLB transmission by ACP in a commercial healthy orchard. Field research was carried out from 1 April 2011 to 1 December 2014 in a 2-year-old 1 ha citrus farm that consisted of 200 PCR-certified disease-free grafted non-bearing honey tangerine (Citrus reticulata L.) in southwestern Sarawak, Malaysia. The experiment had two treatments namely control (unsprayed) and nC24 HMO with four replications arranged in a simple randomized block design. ACP eggs, nymphs, and adults per flush shoot was assessed and HLB incidence was monitored for visual inspection of the citrus trees for the current existence of usual signs of characteristic symptoms of HLB such as yellowing shoots, leaf mottling, and corky or enlarged veins on leaves. HLB-specific primer was employed in 16S rDNA polymerase chain reaction to detect the CLas gene in diseased trees. Increase in abundance of D. citri is mainly affected by the citrus flushing cycles and their life stages are completed on these flush shoots. Relative degree of aggregation index for D. citri adults increased during periods of cyclic production of new flush. HMO-treated plots produced a significantly lower percentage up to 11.43% of diseased trees against 42.20% in untreated control plots. HMO is effective against D. citri and recommended to be incorporated in the IPM program to prevent infection and reduce the spread of HLB.

3.
Antibiotics (Basel) ; 10(7)2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34202216

ABSTRACT

BACKGROUND: The emergence of plasmid-mediated antibiotic resistance in Escherichia coli in water resources could pose a serious threat to public health. The study aims to investigate the dispersion of plasmid-mediated antibiotic-resistant E. coli from six rivers in Sarawak and two aquaculture farms in Borneo. METHODS: A total of 74 water samples were collected for the determination of their bacteria colony count. An IMViC test identified 31 E. coli isolates and tested their susceptibility against twelve clinically important antibiotics. The extraction of plasmid DNA was done using alkali lysis SDS procedures. Characteristics, including plasmid copy number, molecular weight size, resistance rate and multiple antibiotic resistance (MAR), were assessed. RESULTS: Our findings revealed that bacterial counts in rivers and aquaculture farms ranged from log 2.00 to 3.68 CFU/mL and log 1.70 to 5.48 cfu/mL, respectively. Resistance to piperacillin (100%) was observed in all E. coli; resistance to amoxicillin (100%) and ampicillin (100%) was observed in E. coli found in aquaculture farms; resistance to streptomycin (93%) was observed in E. coli found in rivers. All E. coli were resistant to ≥2 antibiotics and formed 26 MAR profiles, ranging from an index of 0.17 to 0.83, indicating that there are high risks of contamination. Some (48.4%) of the E. coli were detected with plasmids (1.2 to >10 kb), whereas 51.6% of the E. coli did not harbor any plasmids. The plasmid copy numbers reported were one plasmid (n = 7), two plasmids (n = 4), ≥ two plasmids (4). E. coli isolated from the Muara Tuang River showed the highest-molecular-weight plasmids. A statistical analysis revealed that there is no significant correlation (r = 0.21, p = 0.253) between the number of plasmids and the MAR index of the tested isolates. CONCLUSION: The distribution of MAR in E. coli from rivers is higher compared to the aquaculture environment. Our study suggests that MAR in isolates could be chromosome-mediated. Our results suggest that riverbed sediments could serve as reservoirs for MAR bacteria, including pathogens, under different climatic conditions, and their analysis could provide information for public health concerns.

SELECTION OF CITATIONS
SEARCH DETAIL