Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 941: 173678, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38848919

ABSTRACT

The incomplete degradation of antibiotics in water can produce intermediates that carry environmental risks and thus warrant concerns. In this study, the degradation of high concentrations of antibiotic sulfadiazine (SDZ) by advanced oxidation processes that leverage different reactive oxide species was systematically evaluated in terms of the influence of different degradation intermediates on the propagation of antibiotic resistance genes (ARGs). The ozone, persulfate, and photocatalytic oxidation systems for SDZ degradation are dominated by ozone, direct electron transfer, and singlet oxygen, hole, and superoxide radicals, respectively. These processes produce 15 intermediates via six degradation pathways. Notably, it was determined that three specific intermediates produced by the ozone and persulfate systems were more toxic than SDZ. In contrast, the photocatalytic system did not produce any intermediates with toxicity exceeding that of SDZ. Microcosm experiments combined with metagenomics confirmed significant changes in microbiota community structure after treatment with SDZ and its intermediates, including significant changes in the abundance of Flavobacterium, Dungenella, Archangium, and Comamonas. This treatment also led to the emergence of sulfonamide ARGs. The total abundance of sulfonamide ARGs was found to be positively correlated with residual SDZ concentration, with the lowest total abundance observed in the photocatalytic system. Additionally, the correlation analysis unveiled microbiota carrying sulfonamide ARGs.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Microbial , Oxidation-Reduction , Sulfadiazine , Water Pollutants, Chemical , Water Pollutants, Chemical/toxicity , Drug Resistance, Microbial/genetics , Anti-Bacterial Agents/toxicity , Biodegradation, Environmental
2.
Sci Total Environ ; 926: 171885, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38527540

ABSTRACT

Organic contaminants, notorious for their complexity and resistance to degradation, are prevalent in aquatic environments, posing severe threats to ecosystems. Sulfate radical-based advanced oxidation processes (SR-AOPs), known for their stability and high effectiveness, have become a common choice for treating organic wastewater. Metal-organic framework materials (MOFs) have garnered substantial attention due to their facile chemical manipulation, unique structural configurations, and other favorable properties. Therefore, this article critically reviews recent advances in research involving the utilization of Fe-based MOFs (Fe-MOFs) and their derivatives in SR-AOPs. Specifically, it highlights the manipulation of influencing factors within the system to enhance the degradation of organic pollutants. The mechanisms and applications underlying the degradation of organic pollutants in the SR-AOPs system are also elucidated.

3.
Environ Pollut ; 344: 123223, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38158009

ABSTRACT

Electrospun nanofiber membranes have emerged as a novel catalyst, demonstrating exceptional efficacy in advanced oxidation processes (AOPs) for the degradation of organic pollutants. Their superior performance can be attributed to their substantial specific surface area, high porosity, ease of modification, rapid recovery, and unparalleled chemical stability. This paper aims to comprehensively explore the progressive applications and underlying mechanisms of electrospun nanofibers in AOPs, which include Fenton-like processes, photocatalysis, catalytic ozonation, and persulfate oxidation. A detailed discussion on the mechanism and efficiency of the catalytic process, which is influenced by the primary components of the electrospun catalyst, is presented. Additionally, the paper examines how concentration, viscosity, and molecular weight affect the characteristics of the spinning materials and seeks to provide a thorough understanding of electrospinning technology to enhance water treatment methods. The review proposes that electrospun nanofiber membranes hold significant potential for enhancing water treatment processes using advanced oxidation methods. This is attributed to their advantageous properties and the tunable nature of the electrospinning process, paving the way for advancements in water treatment through AOPs.


Subject(s)
Nanofibers , Water Pollutants, Chemical , Water Purification , Nanofibers/chemistry , Oxidation-Reduction , Water Purification/methods , Water Pollutants, Chemical/chemistry
4.
Environ Res ; 239(Pt 2): 117419, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37852466

ABSTRACT

There is currently an escalating global demand for the utilization of plant and natural extracts as pesticides due to their minimal health risks. Cyanobacteria are highly valuable organisms with significant potential in agriculture and are of great interest for the development of agrochemical agents as biopesticides. The flexibility and adaptability of Cyanobacteria to various environmental conditions are facilitated by the presence of specialized enzymes involved in the production of biologically active diverse secondary metabolites, including alkaloids, lipopolysaccharides, non-protein amino acids, non-ribosomal peptides, polyketides, terpenoids, and others. This review focuses on the metabolites synthesized from cyanobacteria that have demonstrated effectiveness as antibacterial, antiviral, antifungal agents, insecticides, herbicides, and more. The potential role of cyanobacteria as an alternative to chemical pesticides for environmental conservation is discussed.


Subject(s)
Cyanobacteria , Insecticides , Pesticides , Biological Control Agents/chemistry , Biological Control Agents/metabolism , Carbon Dioxide , Pesticides/metabolism , Insecticides/chemistry , Cyanobacteria/metabolism , Anti-Bacterial Agents
5.
Bioresour Technol ; 389: 129782, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37742815

ABSTRACT

Biochar, a solid carbonaceous substance synthesized from the thermochemical degradation of biomass, holds significant potential in addressing global challenges such as soil degradation, environmental pollution, and climate change. Its potential as a carbon sequestration agent, together with its versatile applications in soil amendments, pollutant adsorption, and biofuel production, has garnered attention. On the other hand, microalgae, with their outstanding photosynthetic efficiency, adaptability, and ability to accumulate carbohydrates and lipids, have demonstrated potential as emerging feedstock for biochar production. However, despite the significant potential of microalgal biochar, our current understanding of its various aspects, such as the influence of parameters, chemical modifications, and applications, remains limited. Therefore, this review aims to provide a comprehensive analysis of microalgae-based biochar, covering topics such as production techniques, pollutant removal, catalytic applications, soil amendments, and synthesis of carbon quantum dots to bridge the existing knowledge gap in this field.

6.
Bioresour Technol ; 387: 129536, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37544549

ABSTRACT

Corn straw and sludge-derived biochar composite (BC) loaded with CoFe2O4 was successfully prepared to activate peracetic acid (PAA) for efficient degradation of tetracycline hydrochloride (TCH). Within 60 s, 96 % TCH removal efficiency was achieved through a non-free radical degradation pathway, primarily driven by singlet oxygen (1O2). The mechanism involves the electron-rich groups on the biochar surface, which facilitate the cleavage of the PAA OO bond to generate •O2-/1O2 and provide electrons to induce the formation of high-valent Fe(IV) and Co(IV). The oxygen vacancies on the surface of the CoFe2O4-loaded biochar composite (CFB-2) contribute partially to 1O2 production through their transformation into a metastable intermediate with dissolved oxygen. Moreover, elevated temperatures further enhance PAA activation by CFB-2, leading to increased reactive oxygen species (ROS) production through PAA decomposition, thereby promoting TCH removal. This study offers new insights into the catalysis of metal-loaded biochar for efficient TCH degradation via non-free radical generation.


Subject(s)
Oxygen , Peracetic Acid , Reactive Oxygen Species , Tetracycline , Anti-Bacterial Agents , Charcoal
7.
Bioresour Technol ; 384: 129277, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37290703

ABSTRACT

The objective of this study was to explore the potential of utilizing Chlorella sorokiniana SU-1 biomass grown on dairy wastewater-amended medium as sustainable feedstock for the biosynthesis of ß-carotene and polyhydroxybutyrate (PHB) by Rhodotorula glutinis #100-29. To break down the rigid cell wall, 100 g/L of microalgal biomass was treated with 3% sulfuric acid, followed by detoxification using 5% activated carbon to remove the hydroxymethylfurfural inhibitor. The detoxified microalgal hydrolysate (DMH) was used for flask-scale fermentation, which yielded a maximum biomass production of 9.22 g/L, with PHB and ß-carotene concentration of 897 mg/L and 93.62 mg/L, respectively. Upon scaling up to a 5-L fermenter, the biomass concentration increased to 11.2 g/L, while the PHB and ß-carotene concentrations rose to 1830 mg/L and 134.2 mg/L. These outcomes indicate that DMH holds promise as sustainable feedstock for the production of PHB and ß-carotene by yeast.


Subject(s)
Chlorella , Microalgae , Rhodotorula , beta Carotene , Wastewater , Biomass
8.
Sci Rep ; 13(1): 3137, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36823427

ABSTRACT

Following the rising concern on environmental issues caused by conventional fossil-based plastics and depleting crude oil resources, polyhydroxyalkanoates (PHAs) are of great interest by scientists and biodegradable polymer market due to their outstanding properties which include high biodegradability in various conditions and processing flexibility. Many polyhydroxyalkanoate-synthesizing microorganisms, including normal and halophilic bacteria, as well as algae, have been investigated for their performance in polyhydroxyalkanoate production. However, to the best of our knowledge, there is still limited studies on PHAs-producing marine yeast. In the present study, a halophilic yeast strain isolated from Spratly Island in Vietnam were investigated for its potential in polyhydroxyalkanoate biosynthesis by growing the yeast in Zobell marine agar medium (ZMA) containing Nile red dye. The strain was identified by 26S rDNA analysis as Pichia kudriavzevii TSLS24 and registered at Genbank database under code OL757724. The amount of polyhydroxyalkanoates synthesized was quantified by measuring the intracellular materials (predicted as poly(3-hydroxybutyrate) -PHB) by gravimetric method and subsequently confirmed by Fourier transform infrared (FTIR) spectroscopic and nuclear magnetic resonance (NMR) spectroscopic analyses. Under optimal growth conditions of 35 °C and pH 7 with supplementation of glucose and yeast extract at 20 and 10 gL-1, the isolated strain achieved poly(3-hydroxybutyrate) content and concentration of 43.4% and 1.8 gL-1 after 7 days of cultivation. The poly(3-hydroxybutyrate) produced demonstrated excellent biodegradability with degradation rate of 28% after 28 days of incubation in sea water.


Subject(s)
Polyhydroxyalkanoates , Polyhydroxyalkanoates/chemistry , Pichia/metabolism , Vietnam , Magnetic Resonance Spectroscopy
9.
Bioresour Technol ; 372: 128625, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36642201

ABSTRACT

Given the potential of machine learning algorithms in revolutionizing the bioengineering field, this paper examined and summarized the literature related to artificial intelligence (AI) in the bioprocessing field. Natural language processing (NLP) was employed to explore the direction of the research domain. All the papers from 2013 to 2022 with specific keywords of bioprocessing using AI were extracted from Scopus and grouped into two five-year periods of 2013-to-2017 and 2018-to-2022, where the past and recent research directions were compared. Based on this procedure, selected sample papers from recent five years were subjected to further review and analysis. The result shows that 50% of the publications in the past five-year focused on topics related to hybrid models, ANN, biopharmaceutical manufacturing, and biorefinery. The summarization and analysis of the outcome indicated that implementing AI could improve the design and process engineering strategies in bioprocessing fields.


Subject(s)
Artificial Intelligence , Big Data , Machine Learning , Algorithms , Natural Language Processing
10.
Bioresour Technol ; 363: 128012, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36155811

ABSTRACT

Due to the nutritional values and functional bioactivities of mushrooms, the global market value of the edible mushroom industry has been growing steadily. However, the production of 1 kg of fresh mushroom generates about 5 kg of wet byproducts (known as spent mushroom substrate; SMS). This necessitates proper waste management to mitigate potential environmental threats. Embracing the "waste-to-fuel" concept, SMS as lignocellulosic waste can serve as cheap and abundant feedstock for the production of a variety of biofuels, including biogas, biohydrogen, bioethanol, bio-oil, and solid-biofuels. Mushroom cultivation serves as efficient biological pretreatment for biofuel production, promoting biofuel yield and improving the overall economy. Therefore, integrated mushroom cultivation and biofuel production can simultaneously satisfy the rapidly rising food and energy demand. The article systematically reviewed the recycling and re-utilization of SMS in sustainable biofuel production, discussing the possible challenges and proposing future directions for the green development of the mushroom industry.


Subject(s)
Agaricales , Waste Management , Biofuels , Carbon
11.
Bioresour Technol ; 363: 128002, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36155816

ABSTRACT

Industrial adoption of microalgae biofuel technology has always been hindered by its economic viability. To increase the feasibility of bioethanol production from microalgae, fermentation was applied to Chlorella vulgaris FSP-E biomass at high-solids loading conditions. First, Chlorella vulgaris FSP-E was cultivated to produce microalgae biomass with high carbohydrate content. Next, different ethanol-producing microorganisms were screened. Saccharomyces cerevisiae FAY-1 showed no inhibition when fermenting high initial glucose concentrations and was selected for the fermentation experiments at high-solids loadings. Optimization of acid hydrolysis at high biomass loading was also performed. The fermentation of microalgal biomass hydrolysate produced a final ethanol concentration and yield higher than most reported literature using microalgae feedstock. In addition, the kinetics of bioethanol fermentation of microalgae hydrolysate under high-solids loading were evaluated. These results showed the potential of fermenting microalgae biomass at high-solids loading in improving the viability of microalgae bioethanol production.


Subject(s)
Chlorella vulgaris , Microalgae , Biofuels , Biomass , Carbohydrates , Ethanol , Fermentation , Glucose , Hydrolysis , Saccharomyces cerevisiae
12.
Bioresour Technol ; 360: 127618, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35840031

ABSTRACT

Following the surging demand for sustainable biofuels, biogas production via anaerobic digestion (AD) presented itself as a solution for energy security, waste management, and greenhouse gas mitigation. Algal-based biorefinery platform serves an important role in the AD-based closed-loop circular economy. Other than using whole biomass of micro- and macroalgae as feedstock for biogas production, the integration of AD with other bio- or thermochemical conversion techniques can achieve complete valorization of biomass residue after processing or valuable compounds extraction. On the other hand, anaerobic digestate, the byproduct of AD processes can be used for microalgal cultivation for lipid and pigments accumulation, closing the loop of resource flow. Furthermore, algae and its consortium with bacteria or fungi can be employed for combined biogas upgrading and wastewater treatment. Innovative strategies have been developed to enhance biogas upgrading and pollutant removal performance as well as minimize O2 and N2 content in the upgraded biomethane.


Subject(s)
Microalgae , Waste Management , Anaerobiosis , Biofuels , Biomass , Plants
13.
Bioresour Technol ; 359: 127459, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35700899

ABSTRACT

The demands for fruits and processed products have significantly increased following the surging human population growth and rising health awareness. However, an enormous amount of fruit waste is generated during their production life-cycle due to the inedible portion and perishable nature, which become a considerable burden to the environment. Embracing the concept of "circular economy", these fruit wastes represent sustainable and renewable resources and can be integrated into biorefinery platforms for valorization into a wide range of high-value products. To fully realize the potential of fruit waste in circular bioeconomy and provide insights on future commercial-scale applications, this review presented the recycling and utilization of fruit wastes in various applications, particularly focusing on pollutant bioremediation, renewable energy and biofuel production, biosynthesis of bioactive compounds and low-cost microbial growth media. Furthermore, the challenges of efficient valorization of fruit wastes were discussed and future prospects were proposed.


Subject(s)
Biofuels , Fruit , Humans , Recycling
14.
Chemosphere ; 301: 134654, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35452644

ABSTRACT

Chlortetracycline (CTC) is a tetracycline derivative antibiotic that has been widely used in the livestock industry for prophylactic and therapeutic purposes. Effective measures should be taken to decrease the environmental risks associated with CTC-rich waste. Biochar produced by biomass waste showed great potential for organic contaminants removal by adsorption and catalytic degradation. This study prepared iron oxide-modified coffee grounds biochar (CGF) at different temperatures for enhanced CTC removal by adsorption and degradation. The main mechanism for CTC removal was found to be electrostatic interaction. In addition, pore diffusion, hydrogen bonds, and π-π bonds also contributed to CTC adsorption. Maximum CTC adsorption capacity was 223.63 mg/g for CGF800 (CGF prepared at 800 °C pyrolysis). The free radical content of CGF600 (CFG prepared at 600 °C pyrolysis) was higher than CGF800, and there were no significant advantages in using biochar prepared at a higher temperature for persulfate activation. The ion mass-to-charge ratio (M/z) is used to describe the ratio of mass to charge of an ion or peak, which can infer compound structure. The structure of CTC degradation products was analyzed by UPLC-MS, and the M/z values were determined as 444, 273, and 154. Thus, pyrolysis of coffee grounds at higher temperatures increased CTC adsorption capacity, and CGF can indirectly assist in CTC degradation by persulfate activation.


Subject(s)
Chlortetracycline , Water Pollutants, Chemical , Adsorption , Anti-Bacterial Agents , Charcoal/chemistry , Chromatography, Liquid , Coffee , Ferric Compounds , Tandem Mass Spectrometry , Water Pollutants, Chemical/analysis
15.
Cells ; 11(5)2022 03 05.
Article in English | MEDLINE | ID: mdl-35269526

ABSTRACT

The potential of cyanobacteria to perform a variety of distinct roles vital for the biosphere, including nutrient cycling and environmental detoxification, drives interest in studying their biodiversity. Increasing soil erosion and the overuse of chemical fertilizers are global problems in developed countries. The option might be to switch to organic farming, which entails largely the use of biofertilisers. Cyanobacteria are prokaryotic, photosynthetic organisms with considerable potential, within agrobiotechnology, to produce biofertilisers. They contribute significantly to plant drought resistance and nitrogen enrichment in the soil. This study sought, isolated, and investigated nitrogen-fixing cyanobacterial strains in rice fields, and evaluated the effect of Mo and Fe on photosynthetic and nitrogenase activities under nitrogen starvation. Cyanobacterial isolates, isolated from rice paddies in Kazakhstan, were identified as Trichormus variabilis K-31 (MZ079356), Cylindrospermum badium J-8 (MZ079357), Nostoc sp. J-14 (MZ079360), Oscillatoria brevis SH-12 (MZ090011), and Tolypothrix tenuis J-1 (MZ079361). The study of the influence of various concentrations of Mo and Fe on photosynthetic and nitrogenase activities under conditions of nitrogen starvation revealed the optimal concentrations of metals that have a stimulating effect on the studied parameters.


Subject(s)
Cyanobacteria , Oryza , Cyanobacteria/metabolism , Nitrogen , Nitrogen Fixation , Nitrogenase/metabolism , Oryza/metabolism , Photosynthesis
16.
Chemosphere ; 297: 134214, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35257707

ABSTRACT

As a special type of wastewater produced in the landfill, leachate is mainly composed of organic pollutants, inorganic salts, ammonia nitrogen and heavy metals, and featured by high pollutants concentration, complex composition and large fluctuations in water quality and volume. Biological, chemical and physical methods have been proposed to treat landfill leachate, but much attention has been paid to the advanced oxidation processes (AOPs), due to their high adaptability and organic degradation efficiency. This paper summarizes the recent findings on the AOPs based on hydroxyl radical (OH) (e.g., ozonation and catalyzed ozone oxidations, Fenton and Fenton-like oxidations) and sulfate radical (SO4-) (e.g., activated and catalyzed persulfate oxidations), especially the production routes of free radicals and mechanisms of action. When dealing with some special landfill leachates, it is difficult for a single advanced oxidation technology to achieve the expected results, but the synergistic combination with biological or physical methods can produce satisfactory outcomes. Therefore, this paper has summarized the application of these combined treatment technologies on landfill leachate.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Hydrogen Peroxide , Hydroxyl Radical , Oxidation-Reduction , Sulfates/chemistry , Water Pollutants, Chemical/analysis
17.
Bioresour Technol ; 344(Pt A): 126157, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34678450

ABSTRACT

Commercial mushrooms are cultivated on lignocellulose wastes, such as corncob, saw dust, straw and wood chips. Following the rapidly increasing global mushroom production, the efficient recycling and utilization of the by-product, known as spent mushroom substrate (SMS) has garnered much attention due to the serious pollution issues caused. Embracing the concept of 'circular economy', the SMSs have demonstrated immense potential in wide range of applications, including recycling as the substrate for new cultivation cycle of mushroom, biofertilizer and soil amendment, animal feed, renewable energy production and pollution bioremediation. The review provided an overview and recent advances focusing on these applications, analyzed the possible challenges and proposed future directions for sustainable development of global mushroom industry.


Subject(s)
Agaricales , Animals , Biodegradation, Environmental , Soil
18.
Bioresour Technol ; 344(Pt A): 126170, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34678455

ABSTRACT

Fucoxanthin, a brown-colored pigment from algae, is gaining much attention from industries and researchers recently due to its numerous potential health benefits, including anti-oxidant, anti-cancer, anti-obesity functions, and so on. Although current commercial production is mainly from brown macroalgae, microalgae with rapid growth rate and much higher fucoxanthin content demonstrated higher potential as the fucoxanthin producer. Factors such as concentration of nitrogen, iron, silicate as well as light intensity and wavelength play a significant role in fucoxanthin biosynthesis from microalgae. Two-stage cultivation approaches have been proposed to maximize the production of fucoxanthin and other valuable metabolites. Sustainable fucoxanthin production can be achieved by using low-cost substrates as a culture medium in an open pond cultivation system utilizing seawater with nutrient recycling. For downstream processing, the integration of novel "green" solvents with other extraction techniques emerged as a promising extraction technique.


Subject(s)
Microalgae , Seaweed , Light , Xanthophylls
19.
Chemosphere ; 291(Pt 1): 133057, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34838828

ABSTRACT

Utilizing wastewaters as feedstock for microalgal cultivation has the dual benefits of water-saving and low nutrient costs, with simultaneous remediation of pollutants and generation of value-added biochemical products. This study employed two different strategies to treat raw dairy wastewaters with moderate and high chemical oxygen demand (COD) levels. For moderate-COD dairy wastewater, the wastewater was directly utilized as feedstock for algal cultivation, in which the effects of wastewater dilution ratios and algal inoculum sizes were investigated. The results show that the microalga strain used (Chlorella sorokiniana SU-1) was capable of obtaining a high biomass concentration of 3.2 ± 0.1 g/L, accompanied by 86.8 ± 6%, 94.6 ± 3%, and 80.7 ± 1%, removal of COD, total phosphorus (TP) and total nitrogen (TN), respectively. Meanwhile, the obtained microalgal biomass has lipids content of up to 12.0 ± 0.7% at a wastewater dilution ratio of 50% and an inoculum size of 2 g/L. For high-COD dairy wastewater, an integrated process of anaerobic digestion and microalgal phycoremediation was employed, and the effect of inoculum sizes was also studied. The inoculum size of 2 g/L gave highest biomass production of 4.25 ± 0.10 g/L with over 93.0 ± 2.0% removal of COD, TP, and TN. The harvested microalgal biomass has lipids and protein content of 12.5 ± 2.2% and 18.0 ± 2.2%, respectively. The present study demonstrated potential microalgal phycoremediation strategies for the efficient COD removal and nutrients recovery from dairy wastewater of different COD levels with simultaneous production of microalgal biomass which contains valuable components, such as protein and lipids.


Subject(s)
Chlorella , Microalgae , Water Purification , Anaerobiosis , Biomass , Nitrogen/analysis , Wastewater
20.
J Environ Manage ; 296: 113193, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34237671

ABSTRACT

Following the escalating human population growth and rapid urbanization, the tremendous amount of urban and industrial waste released leads to a series of critical issues such as health issues, climate change, water crisis, and pollution problems. With the advantages of a favorable carbon life cycle, high photosynthetic efficiencies, and being adaptive to harsh environments, algae have attracted attention as an excellent agent for pollution prevention and waste phycoremediation. Following the concept of circular economy and biorefinery for sustainable production and waste minimization, this review discusses the role of four different algal-based wastewater treatment technologies, including high-rate algal ponds (HRAPs), HRAP-absorption column (HRAP-AC), hybrid algal biofilm-enhanced raceway pond (HABERP) and algal turf scrubber (ATS) in waste management and resource recovery. In addition to the nutrient removal mechanisms and operation parameters, recent advances and developments have been discussed for each technology, including (1) Innovative operation strategies and treatment of emerging contaminants (ECs) employing HRAPs, (2) Biogas upgrading utilizing HRAP-AC system and approaches of O2 minimization in biomethane, (3) Operation of different HABERP systems, (4) Life-cycle and cost analysis of HRAPs-based wastewater treatment system, and (5) Value-upgrading for harvested algal biomass and life-cycle cost analysis of ATS system.


Subject(s)
Microalgae , Water Purification , Biomass , Humans , Ponds , Technology , Waste Disposal, Fluid , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL
...