Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37726160

ABSTRACT

High-frequency oscillatory ventilation (HFOV) is an established mode of respiratory support in the neonatal intensive care unit. Large clinical trial data is based on first intention use in preterm infants with acute respiratory distress syndrome. Clinical practice has evolved from this narrow population. HFOV is most often reserved for term and preterm infants with severe, and often complex, respiratory failure not responding to conventional modalities of respiratory support. Thus, optimal, and safe, application of HFOV requires the clinician to adapt mean airway pressure, frequency, inspiratory:expiratory ratio and tidal volume to individual patient needs based on pathophysiology, lung volume state and infant size. This narrative review summarises the status of HFOV in neonatal intensive care units today, the lessons that can be learnt from the past, how to apply HFOV in different neonatal populations and conditions and highlights potential new advances. Specifically, we provide guidance on how to apply an open lung approach to mean airway pressure, selecting the correct frequency and use of volume-targeted HFOV.

2.
Theor Comput Fluid Dyn ; 35(2): 265-291, 2021.
Article in English | MEDLINE | ID: mdl-33612975

ABSTRACT

High-frequency ventilation is a type of mechanical ventilation therapy applied on patients with damaged or delicate lungs. However, the transport of oxygen down, and carbon dioxide up, the airway is governed by subtle transport processes which hitherto have been difficult to quantify. We investigate one of these mechanisms in detail, nonlinear mean streaming, and the impact of the onset of turbulence on this streaming, via direct numerical simulations of a model 1:2 bifurcating pipe. This geometry is investigated as a minimal unit of the fractal structure of the airway. We first quantify the amount of gas recirculated via mean streaming by measuring the recirculating flux in both the upper and lower branches of the bifurcation. For conditions modeling the trachea-to-bronchi bifurcation of an infant, we find the recirculating flux is of the order of 3-5% of the peak flux . We also show that for conditions modeling the upper generations, the mean recirculation regions extend a significant distance away from the bifurcation, certainly far enough to recirculate gas between generations. We show that this mean streaming flow is driven by the formation of longitudinal vortices in the flow leaving the bifurcation. Second, we show that conditional turbulence arises in the upper generations of the airway. This turbulence appears only in the flow leaving the bifurcation, and at a point in the cycle centered around the maximum instantaneous flow rate. We hypothesize that its appearance is due to an instability of the longitudinal-vortices structure.

3.
Phys Rev E ; 102(1-1): 013106, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32794909

ABSTRACT

We examine and discuss the spatial evolution of the statistical properties of mechanically generated surface gravity wave fields, initialized with unidirectional spectral energy distributions, uniformly distributed phases, and Rayleigh distributed amplitudes. We demonstrate that nonlinear interactions produce an energy cascade towards high frequency modes with a directional spread and trigger localized intermittent bursts. By analyzing the probability density function of Fourier mode amplitudes in the high frequency range of the wave energy spectrum, we show that a heavy-tailed distribution emerges with distance from the wave generator as a result of these intermittent bursts, departing from the originally imposed Rayleigh distribution, even under relatively weak nonlinear conditions.

SELECTION OF CITATIONS
SEARCH DETAIL