Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Genet ; 20(6): e1011302, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38829899

ABSTRACT

Cryptococcus neoformans is an opportunistic, human fungal pathogen which undergoes fascinating switches in cell cycle control and ploidy when it encounters stressful environments such as the human lung. Here we carry out a mechanistic analysis of the spindle checkpoint which regulates the metaphase to anaphase transition, focusing on Mps1 kinase and the downstream checkpoint components Mad1 and Mad2. We demonstrate that Cryptococcus mad1Δ or mad2Δ strains are unable to respond to microtubule perturbations, continuing to re-bud and divide, and die as a consequence. Fluorescent tagging of Chromosome 3, using a lacO array and mNeonGreen-lacI fusion protein, demonstrates that mad mutants are unable to maintain sister-chromatid cohesion in the absence of microtubule polymers. Thus, the classic checkpoint functions of the SAC are conserved in Cryptococcus. In interphase, GFP-Mad1 is enriched at the nuclear periphery, and it is recruited to unattached kinetochores in mitosis. Purification of GFP-Mad1 followed by mass spectrometric analysis of associated proteins show that it forms a complex with Mad2 and that it interacts with other checkpoint signalling components (Bub1) and effectors (Cdc20 and APC/C sub-units) in mitosis. We also demonstrate that overexpression of Mps1 kinase is sufficient to arrest Cryptococcus cells in mitosis, and show that this arrest is dependent on both Mad1 and Mad2. We find that a C-terminal fragment of Mad1 is an effective in vitro substrate for Mps1 kinase and map several Mad1 phosphorylation sites. Some sites are highly conserved within the C-terminal Mad1 structure and we demonstrate that mutation of threonine 667 (T667A) leads to loss of checkpoint signalling and abrogation of the GAL-MPS1 arrest. Thus Mps1-dependent phosphorylation of C-terminal Mad1 residues is a critical step in Cryptococcus spindle checkpoint signalling. We conclude that CnMps1 protein kinase, Mad1 and Mad2 proteins have all conserved their important, spindle checkpoint signalling roles helping ensure high fidelity chromosome segregation.


Subject(s)
Cell Cycle Proteins , Cryptococcus neoformans , Mad2 Proteins , Spindle Apparatus , Cryptococcus neoformans/genetics , Cryptococcus neoformans/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Mad2 Proteins/metabolism , Mad2 Proteins/genetics , Spindle Apparatus/metabolism , Spindle Apparatus/genetics , Signal Transduction , Fungal Proteins/metabolism , Fungal Proteins/genetics , Humans , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , M Phase Cell Cycle Checkpoints/genetics , Mitosis/genetics , Kinetochores/metabolism , Chromosome Segregation/genetics , Microtubules/metabolism , Microtubules/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics
2.
Curr Biol ; 29(14): 2407-2414.e7, 2019 07 22.
Article in English | MEDLINE | ID: mdl-31257143

ABSTRACT

The spindle checkpoint monitors kinetochore-microtubule interactions and generates a "wait anaphase" delay when any defects are apparent [1-3]. This provides time for cells to correct chromosome attachment errors and ensure high-fidelity chromosome segregation. Checkpoint signals are generated at unattached chromosomes during mitosis. To activate the checkpoint, Mps1Mph1 kinase phosphorylates the kinetochore component KNL1Spc105/Spc7 on conserved MELT motifs to recruit Bub3-Bub1 complexes [4-6] via a direct Bub3 interaction with phospho-MELT motifs [7, 8]. Mps1Mph1 then phosphorylates Bub1, which strengthens its interaction with Mad1-Mad2 complexes to produce a signaling platform [9, 10]. The Bub1-Mad1 platform is thought to recruit Mad3, Cdc20, and Mad2 to produce the mitotic checkpoint complex (MCC), which is the diffusible wait anaphase signal [9, 11, 12]. The MCC binds and inhibits the mitotic E3 ubiquitin ligase, known as Cdc20-anaphase promoting complex/cyclosome (APC/C), and stabilizes securin and cyclin to delay anaphase onset [13-17]. Here we demonstrate, in both budding and fission yeast, that kinetochores and KNL1Spc105/Spc7 can be bypassed; simply inducing heterodimers of Mps1Mph1 kinase and Bub1 is sufficient to trigger metaphase arrest that is dependent on Mad1, Mad2, and Mad3. We use this to dissect the domains of Bub1 necessary for arrest, highlighting the need for Bub1-CD1, which binds Mad1 [9], and Bub1's highly conserved N-terminal tetratricopeptide repeat (TPR) domain [18, 19]. We demonstrate that the Bub1 TPR domain is both necessary and sufficient to bind and recruit Mad3. We propose that this brings Mad3 into close proximity to Mad1-Mad2 and Mps1Mph1 kinase, enabling efficient generation of MCC complexes.


Subject(s)
Cell Cycle Proteins/genetics , Nuclear Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces/genetics , Tetratricopeptide Repeat/genetics , Cell Cycle Proteins/metabolism , M Phase Cell Cycle Checkpoints , Nuclear Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/metabolism
3.
J Cell Sci ; 132(4)2018 10 04.
Article in English | MEDLINE | ID: mdl-30237224

ABSTRACT

Chemically induced dimerisation (CID) uses small molecules to control specific protein-protein interactions. We employed CID dependent on the plant hormone abscisic acid (ABA) to reconstitute spindle checkpoint signalling in fission yeast. The spindle checkpoint signal usually originates at unattached or inappropriately attached kinetochores. These are complex, multiprotein structures with several important functions. To bypass kinetochore complexity, we took a reductionist approach to studying checkpoint signalling. We generated a synthetic checkpoint arrest ectopically by inducing heterodimerisation of the checkpoint proteins Mph1 (the fission yeast homologue of Mps1) and Spc7 (the fission yeast homologue of KNL1). These proteins were engineered such that they cannot localise to kinetochores, and only form a complex in the presence of ABA. Using this novel assay we were able to checkpoint arrest a synchronous population of cells within 30 min of ABA addition. This assay allows detailed genetic dissection of checkpoint activation and, importantly, also provides a valuable tool for studying checkpoint silencing. To analyse silencing of the checkpoint and the ensuing mitotic exit, we simply washed out the ABA from arrested fission yeast cells. We show here that silencing is critically dependent on protein phosphatase 1 (PP1) recruitment to Mph1-Spc7 signalling platforms.


Subject(s)
Cell Cycle Checkpoints/physiology , Kinetochores/metabolism , M Phase Cell Cycle Checkpoints/physiology , Spindle Apparatus/metabolism , Cell Cycle Proteins/metabolism , Mitosis/physiology , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/metabolism
4.
Curr Biol ; 28(1): 130-139.e3, 2018 01 08.
Article in English | MEDLINE | ID: mdl-29276128

ABSTRACT

Cell division with partitioning of the genetic material should take place only when paired chromosomes named bivalents (meiosis I) or sister chromatids (mitosis and meiosis II) are correctly attached to the bipolar spindle in a tension-generating manner. For this to happen, the spindle assembly checkpoint (SAC) checks whether unattached kinetochores are present, in which case anaphase onset is delayed to permit further establishment of attachments. Additionally, microtubules are stabilized when they are attached and under tension. In mitosis, attachments not under tension activate the so-named error correction pathway depending on Aurora B kinase substrate phosphorylation. This leads to microtubule detachments, which in turn activates the SAC [1-3]. Meiotic divisions in mammalian oocytes are highly error prone, with severe consequences for fertility and health of the offspring [4, 5]. Correct attachment of chromosomes in meiosis I leads to the generation of stretched bivalents, but-unlike mitosis-not to tension between sister kinetochores, which co-orient. Here, we set out to address whether reduction of tension applied by the spindle on bioriented bivalents activates error correction and, as a consequence, the SAC. Treatment of oocytes in late prometaphase I with Eg5 kinesin inhibitor affects spindle tension, but not attachments, as we show here using an optimized protocol for confocal imaging. After Eg5 inhibition, bivalents are correctly aligned but less stretched, and as a result, Aurora-B/C-dependent error correction with microtubule detachment takes place. This loss of attachments leads to SAC activation. Crucially, SAC activation itself does not require Aurora B/C kinase activity in oocytes.


Subject(s)
Kinetochores/physiology , M Phase Cell Cycle Checkpoints/physiology , Meiosis/physiology , Oocytes/physiology , Animals , Cell Division/drug effects , Cell Division/physiology , Cysteine/analogs & derivatives , Cysteine/pharmacology , Female , Kinesins/antagonists & inhibitors , Kinetochores/drug effects , M Phase Cell Cycle Checkpoints/drug effects , Mice , Oocytes/drug effects , Paclitaxel/pharmacology , Pyrimidines/pharmacology , Thiones/pharmacology , Tubulin Modulators/pharmacology
5.
Curr Biol ; 27(1): 137-143, 2017 Jan 09.
Article in English | MEDLINE | ID: mdl-28017606

ABSTRACT

The spindle checkpoint acts as a mitotic surveillance system, monitoring interactions between kinetochores and spindle microtubules and ensuring high-fidelity chromosome segregation [1-3]. The checkpoint is activated by unattached kinetochores, and Mps1 kinase phosphorylates KNL1 on conserved MELT motifs to generate a binding site for the Bub3-Bub1 complex [4-7]. This leads to dynamic kinetochore recruitment of Mad proteins [8, 9], a conformational change in Mad2 [10-12], and formation of the mitotic checkpoint complex (MCC: Cdc20-Mad3-Mad2 [13-15]). MCC formation inhibits the anaphase-promoting complex/cyclosome (Cdc20-APC/C), thereby preventing the proteolytic destruction of securin and cyclin and delaying anaphase onset. What happens at kinetochores after Mps1-dependent Bub3-Bub1 recruitment remains mechanistically unclear, and it is not known whether kinetochore proteins other than KNL1 have significant roles to play in checkpoint signaling and MCC generation. Here, we take a reductionist approach, avoiding the complexities of kinetochores, and demonstrate that co-recruitment of KNL1Spc7 and Mps1Mph1 is sufficient to generate a robust checkpoint signal and prolonged mitotic arrest. We demonstrate that a Mad1-Bub1 complex is formed during synthetic checkpoint signaling. Analysis of bub3Δ mutants demonstrates that Bub3 acts to suppress premature checkpoint signaling. This synthetic system will enable detailed, mechanistic dissection of MCC generation and checkpoint silencing. After analyzing several mutants that affect localization of checkpoint complexes, we conclude that spindle checkpoint arrest can be independent of their kinetochore, spindle pole, and nuclear envelope localization.


Subject(s)
Cell Cycle Checkpoints , Chromosome Segregation , Mitosis , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/cytology , Signal Transduction , Kinetochores , Microtubules , Phosphorylation , Schizosaccharomyces/physiology , Schizosaccharomyces pombe Proteins/genetics , Spindle Apparatus/metabolism
6.
Cell Rep ; 2(5): 1077-87, 2012 Nov 29.
Article in English | MEDLINE | ID: mdl-23122964

ABSTRACT

In meiosis, two specialized cell divisions allow the separation of paired chromosomes first, then of sister chromatids. Separase removes the cohesin complex holding sister chromatids together in a stepwise manner from chromosome arms in meiosis I, then from the centromere region in meiosis II. Using mouse oocytes, our study reveals that cyclin A2 promotes entry into meiosis, as well as an additional unexpected role; namely, its requirement for separase-dependent sister chromatid separation in meiosis II. Untimely cyclin A2-associated kinase activity in meiosis I leads to precocious sister separation, whereas inhibition of cyclin A2 in meiosis II prevents it. Accordingly, endogenous cyclin A is localized to kinetochores throughout meiosis II, but not in anaphase I. Additionally, we found that cyclin B1, but not cyclin A2, inhibits separase in meiosis I. These findings indicate that separase-dependent cohesin removal is differentially regulated by cyclin B1 and A2 in mammalian meiosis.


Subject(s)
Cell Cycle Proteins/metabolism , Chromatids/metabolism , Cyclin A2/metabolism , Endopeptidases/metabolism , Meiosis , Oocytes/metabolism , Anaphase , Animals , Carrier Proteins/metabolism , Cell Cycle Proteins/antagonists & inhibitors , Cells, Cultured , Centromere/metabolism , Chromosome Segregation , Cyclin A2/antagonists & inhibitors , Cyclin A2/genetics , Cyclin B1/metabolism , Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/metabolism , Kinetochores/metabolism , Metaphase , Mice , Oocytes/cytology , Securin , Separase
SELECTION OF CITATIONS
SEARCH DETAIL