Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroimage Clin ; 24: 102102, 2019.
Article in English | MEDLINE | ID: mdl-31795058

ABSTRACT

BACKGROUND: Diffusion Tensor Imaging (DTI) studies of traumatic brain injury (TBI) have focused on alterations in microstructural features of deep white matter fibers (DWM), though post-mortem studies have demonstrated that injured axons are often observed at the gray-white matter interface where superficial white matter fibers (SWM) mediate local connectivity. OBJECTIVES: To examine microstructural alterations in SWM and DWM in youths with a history of mild TBI and examine the relationship between white matter alterations and attention. METHODS: Using DTIDWM fractional anisotropy (FA) and SWM FA in youths with mild TBI (TBI, n=63) were compared to typically developing and psychopathology matched control groups (n=63 each). Following tract-based spatial statistics, SWM FA was assessed by applying a probabilistic tractography derived SWM mask, and DWM FA was captured with a white matter fiber tract mask. Voxel-wise z-score calculations were used to derive a count of voxels with abnormally high and low FA for each participant. Analyses examined DWM and SWM FA differences between TBI and control groups, the relationship between attention and DWM and SWM FA and the relative susceptibility of SWM compared to DWM FA to alterations associated with mild TBI. RESULTS: Case-based comparisons revealed more voxels with low FA and fewer voxels with high FA in SWM in youths with mild TBI compared to both control groups. Equivalent comparisons in DWM revealed a similar pattern of results, however, no group differences for low FA in DWM were found between mild TBI and the control group with matched psychopathology. Slower processing speed on the attention task was correlated with the number of voxels with low FA in SWM in youths with mild TBI. CONCLUSIONS: Within a sample of youths with a history of mild TBI, this study identified abnormalities in SWM microstructure associated with processing speed. The majority of DTI studies of TBI have focused on long-range DWM fiber tracts, often overlooking the SWM fiber type.


Subject(s)
Attention , Brain Concussion/diagnostic imaging , White Matter/diagnostic imaging , Adolescent , Anisotropy , Brain Concussion/physiopathology , Brain Concussion/psychology , Case-Control Studies , Child , Diffusion Magnetic Resonance Imaging , Diffusion Tensor Imaging , Female , Humans , Image Processing, Computer-Assisted , Male , Reaction Time , Young Adult
2.
Brain Imaging Behav ; 13(3): 725-734, 2019 Jun.
Article in English | MEDLINE | ID: mdl-29779184

ABSTRACT

Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with exposure to repetitive head impacts. CTE has been linked to disruptions in cognition, mood, and behavior. Unfortunately, the diagnosis of CTE can only be made post-mortem. Neuropathological evidence suggests limbic structures may provide an opportunity to characterize CTE in the living. Using 3 T magnetic resonance imaging, we compared select limbic brain regional volumes - the amygdala, hippocampus, and cingulate gyrus - between symptomatic former National Football League (NFL) players (n = 86) and controls (n = 22). Moreover, within the group of former NFL players, we examined the relationship between those limbic structures and neurobehavioral functioning (n = 75). The former NFL group comprised eighty-six men (mean age = 55.2 ± 8.0 years) with at least 12 years of organized football experience, at least 2 years of active participation in the NFL, and self-reported declines in cognition, mood, and behavior within the last 6 months. The control group consisted of men (mean age = 57.0 ± 6.6 years) with no history of contact-sport involvement or traumatic brain injury. All control participants provided neurobehavioral data. Compared to controls, former NFL players exhibited reduced volumes of the amygdala, hippocampus, and cingulate gyrus. Within the NFL group, reduced bilateral cingulate gyrus volume was associated with worse attention and psychomotor speed (r = 0.4 (right), r = 0.42 (left); both p < 0.001), while decreased right hippocampal volume was associated with worse visual memory (r = 0.25, p = 0.027). Reduced volumes of limbic system structures in former NFL players are associated with neurocognitive features of CTE. Volume reductions in the amygdala, hippocampus, and cingulate gyrus may be potential biomarkers of neurodegeneration in those at risk for CTE.


Subject(s)
Chronic Traumatic Encephalopathy/physiopathology , Limbic System/physiology , Amygdala/pathology , Athletes , Brain Concussion/complications , Chronic Traumatic Encephalopathy/etiology , Cognition Disorders/diagnosis , Football/injuries , Football/physiology , Gyrus Cinguli/pathology , Hippocampus/pathology , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Neurodegenerative Diseases/physiopathology
3.
Front Hum Neurosci ; 13: 440, 2019.
Article in English | MEDLINE | ID: mdl-31920598

ABSTRACT

BACKGROUND: Factors of increased prevalence among individuals with Black racial identity (e.g., cardiovascular disease, CVD) may influence the association between exposure to repetitive head impacts (RHI) from American football and later-life neurological outcomes. Here, we tested the interaction between racial identity and RHI on neurobehavioral outcomes, brain volumetric measures, and cerebrospinal fluid (CSF) total tau (t-tau), phosphorylated tau (p-tau181), and Aß1 - 42 in symptomatic former National Football League (NFL) players. METHODS: 68 symptomatic male former NFL players (ages 40-69; n = 27 Black, n = 41 White) underwent neuropsychological testing, structural MRI, and lumbar puncture. FreeSurfer derived estimated intracranial volume (eICV), gray matter volume (GMV), white matter volume (WMV), subcortical GMV, hippocampal volume, and white matter (WM) hypointensities. Multivariate generalized linear models examined the main effects of racial identity and its interaction with a cumulative head impact index (CHII) on all outcomes. Age, years of education, Wide Range Achievement Test, Fourth Edition (WRAT-4) scores, CVD risk factors, and APOEε4 were included as covariates; eICV was included for MRI models. P-values were false discovery rate adjusted. RESULTS: Compared to White former NFL players, Black participants were 4 years younger (p = 0.04), had lower WRAT-4 scores (mean difference = 8.03, p = 0.002), and a higher BMI (mean difference = 3.09, p = 0.01) and systolic blood pressure (mean difference = 8.15, p = 0.03). With regards to group differences on the basis of racial identity, compared to White former NFL players, Black participants had lower GMV (mean adjusted difference = 45649.00, p = 0.001), lower right hippocampal volume (mean adjusted difference = 271.96, p = 0.02), and higher p-tau181/t-tau ratio (mean adjusted difference = -0.25, p = 0.01). There was not a statistically significant association between the CHII with GMV, right hippocampal volume, or p-tau181/t-tau ratio. However, there was a statistically significant Race x CHII interaction for GMV (b = 2206.29, p = 0.001), right hippocampal volume (b = 12.07, p = 0.04), and p-tau181/t-tau ratio concentrations (b = -0.01, p = 0.004). CONCLUSION: Continued research on racial neurological disparities could provide insight into risk factors for long-term neurological disorders associated with American football play.

4.
Neuroimage Clin ; 18: 888-896, 2018.
Article in English | MEDLINE | ID: mdl-29876273

ABSTRACT

Objectives: To determine whether or not automated FreeSurfer segmentation of brain regions considered important in repetitive head trauma can be analyzed accurately without manual correction. Materials and methods: 3 T MR neuroimaging was performed with automated FreeSurfer segmentation and manual correction of 11 brain regions in former National Football League (NFL) players with neurobehavioral symptoms and in control subjects. Automated segmentation and manually-corrected volumes were compared using an intraclass correlation coefficient (ICC). Linear mixed effects regression models were also used to estimate between-group mean volume comparisons and to correlate former NFL player brain volumes with neurobehavioral factors. Results: Eighty-six former NFL players (55.2 ±â€¯8.0 years) and 22 control subjects (57.0 ±â€¯6.6 years) were evaluated. ICC was highly correlated between automated and manually-corrected corpus callosum volumes (0.911), lateral ventricular volumes (right 0.980, left 0.967), and amygdala-hippocampal complex volumes (right 0.713, left 0.731), but less correlated when amygdalae (right -0.170, left -0.090) and hippocampi (right 0.539, left 0.637) volumes were separately delineated and also less correlated for cingulate gyri volumes (right 0.639, left 0.351). Statistically significant differences between former NFL player and controls were identified in 8 of 11 regions with manual correction but in only 4 of 11 regions without such correction. Within NFL players, manually corrected brain volumes were significantly associated with 3 neurobehavioral factors, but a different set of 3 brain regions and neurobehavioral factor correlations was observed for brain region volumes segmented without manual correction. Conclusions: Automated FreeSurfer segmentation of the corpus callosum, lateral ventricles, and amygdala-hippocampus complex may be appropriate for analysis without manual correction. However, FreeSurfer segmentation of the amygdala, hippocampus, and cingulate gyrus need further manual correction prior to performing group comparisons and correlations with neurobehavioral measures.


Subject(s)
Amygdala/pathology , Hippocampus/pathology , Image Processing, Computer-Assisted , Neuroimaging , Organ Size/physiology , Adult , Aged , Brain Mapping , Football , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Male , Middle Aged , Neuroimaging/methods
5.
Brain Imaging Behav ; 12(3): 870-881, 2018 Jun.
Article in English | MEDLINE | ID: mdl-28676987

ABSTRACT

Mild traumatic brain injuries (mTBIs) are often associated with posttraumatic stress disorder (PTSD). In cases of chronic mTBI, accurate diagnosis can be challenging due to the overlapping symptoms this condition shares with PTSD. Furthermore, mTBIs are heterogeneous and not easily observed using conventional neuroimaging tools, despite the fact that diffuse axonal injuries are the most common injury. Diffusion tensor imaging (DTI) is sensitive to diffuse axonal injuries and is thus more likely to detect mTBIs, especially when analyses account for the inter-individual variability of these injuries. Using a subject-specific approach, we compared fractional anisotropy (FA) abnormalities between groups with a history of mTBI (n = 35), comorbid mTBI and PTSD (mTBI + PTSD; n = 22), and healthy controls (n = 37). We compared all three groups on the number of abnormal FA clusters derived from subject-specific injury profiles (i.e., individual z-score maps) along a common white matter skeleton. The mTBI + PTSD group evinced a greater number of abnormally low FA clusters relative to both the healthy controls and the mTBI group without PTSD (p < .05). Across the groups with a history of mTBI, increased numbers of abnormally low FA clusters were significantly associated with PTSD symptom severity, depression, post-concussion symptoms, and reduced information processing speed (p < .05). These findings highlight the utility of subject-specific microstructural analyses when searching for mTBI-related brain abnormalities, particularly in patients with PTSD. This study also suggests that patients with a history of mTBI and comorbid PTSD, relative to those without PTSD, are at increased risk of FA abnormalities.


Subject(s)
Brain Concussion/diagnostic imaging , Brain/diagnostic imaging , Diffusion Tensor Imaging , Stress Disorders, Post-Traumatic/diagnostic imaging , White Matter/diagnostic imaging , Adult , Brain Concussion/complications , Brain Concussion/epidemiology , Comorbidity , Female , Humans , Male , Stress Disorders, Post-Traumatic/complications , Stress Disorders, Post-Traumatic/epidemiology
6.
J Neurotrauma ; 35(2): 278-285, 2018 01 15.
Article in English | MEDLINE | ID: mdl-28990457

ABSTRACT

Thalamic atrophy has been associated with exposure to repetitive head impacts (RHI) in professional fighters. The aim of this study is to investigate whether or not age at first exposure (AFE) to RHI is associated with thalamic volume in symptomatic former National Football League (NFL) players at risk for chronic traumatic encephalopathy (CTE). Eighty-six symptomatic former NFL players (mean age = 54.9 ± 7.9 years) were included. T1-weighted data were acquired on a 3T magnetic resonance imager, and thalamic volumes were derived using FreeSurfer. Mood and behavior, psychomotor speed, and visual and verbal memory were assessed. The association between thalamic volume and AFE to playing football and to number of years playing was calculated. Decreased thalamic volume was associated with more years of play (left: p = 0.03; right: p = 0.03). Younger AFE was associated with decreased right thalamic volume (p = 0.014). This association remained significant after adjusting for total years of play. Decreased left thalamic volume was associated with worse visual memory (p = 0.014), whereas increased right thalamic volume was associated with fewer mood and behavior symptoms (p = 0.003). In our sample of symptomatic former NFL players at risk for CTE, total years of play and AFE were associated with decreased thalamic volume. The effect of AFE on right thalamic volume was almost twice as strong as the effect of total years of play. Our findings confirm previous reports of an association between thalamic volume and exposure to RHI. They suggest further that younger AFE may result in smaller thalamic volume later in life.


Subject(s)
Age Factors , Football/injuries , Head Injuries, Closed/pathology , Thalamus/pathology , Adult , Aged , Athletes , Atrophy , Humans , Magnetic Resonance Imaging , Male , Middle Aged
7.
Neuroimage Clin ; 17: 642-649, 2018.
Article in English | MEDLINE | ID: mdl-29204342

ABSTRACT

OBJECTIVE: Repetitive subconcussive head impacts (RSHI) may lead to structural, functional, and metabolic alterations of the brain. While differences between males and females have already been suggested following a concussion, whether there are sex differences following exposure to RSHI remains unknown. The aim of this study was to identify and to characterize sex differences following exposure to RSHI. METHODS: Twenty-five collegiate ice hockey players (14 males and 11 females, 20.6 ± 2.0 years), all part of the Hockey Concussion Education Project (HCEP), underwent diffusion-weighted magnetic resonance imaging (dMRI) before and after the Canadian Interuniversity Sports (CIS) ice hockey season 2011-2012 and did not experience a concussion during the season. Whole-brain tract-based spatial statistics (TBSS) were used to compare pre- and postseason imaging in both sexes for fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). Pre- and postseason neurocognitive performance were assessed by the Immediate Post-Concussion Assessment and Cognitive Test (ImPACT). RESULTS: Significant differences between the sexes were primarily located within the superior longitudinal fasciculus (SLF), the internal capsule (IC), and the corona radiata (CR) of the right hemisphere (RH). In significant voxel clusters (p < 0.05), decreases in FA (absolute difference pre- vs. postseason: 0.0268) and increases in MD (0.0002), AD (0.00008), and RD (0.00005) were observed in females whereas males showed no significant changes. There was no significant correlation between the change in diffusion scalar measures over the course of the season and neurocognitive performance as evidenced from postseason ImPACT scores. CONCLUSIONS: The results of this study suggest sex differences in structural alterations following exposure to RSHI. Future studies need to investigate further the underlying mechanisms and association with exposure and clinical outcomes.


Subject(s)
Brain Concussion/pathology , Hockey/injuries , Sex Characteristics , White Matter/pathology , Diffusion Tensor Imaging , Female , Humans , Image Interpretation, Computer-Assisted/methods , Male , Young Adult
8.
J Neurotrauma ; 34(16): 2389-2395, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28381107

ABSTRACT

Worldwide, more than 22 million children and adolescents are exposed to repetitive head impacts (RHI) in soccer. Evidence indicates cumulative effects on brain structure, but it is not known whether exposure to RHI affects cognitive improvement in adolescents. The aim of the study was to determine whether exposure to RHI while heading the ball in soccer affects improvement in cognitive performance in adolescents over time. The study group consisted of a convenience sample of 16 male soccer players (mean age 15.7 ± 0.7 years). A comparison cohort of 14 male non-contact sports athletes (mean age 14.9 ± 1.1 years) was recruited from competitive athletic clubs and group-matched in age. Using the ProPoint and AntiPoint tasks, sensorimotor and cognitive functions were measured over both immediate (pre- vs. post-training) as well as across multiple time points within a play season. The number and type of head impacts that occurred during the training were counted. The main outcome measure was the change in response time (RT) in the ProPoint and AntiPoint tasks. The immediate (pre- vs. post-training) and longer-term (across a play season) change in RT was analyzed, and the effect of the number and type of head impacts was tested. Thirty athletes with and without exposure to RHI demonstrated a decrease in RT in both tasks immediately after training. Over the play season, both groups showed improvement in sensorimotor function. While the control group also improved in cognitive performance, the soccer players did not, however. Further, the more long headers performed, the slower the improvement in RT over the season. Youth athletes experience an immediate cognitive improvement after training most likely because of physical exercise. Results of this study also suggest an association between exposure to specific RHI (long headers) and lack of improvement in cognitive performance in youth athletes over time.


Subject(s)
Brain Concussion/complications , Cognitive Dysfunction/etiology , Soccer/injuries , Adolescent , Athletes , Cognitive Dysfunction/epidemiology , Cohort Studies , Humans , Longitudinal Studies , Male , Prospective Studies , Reaction Time
SELECTION OF CITATIONS
SEARCH DETAIL
...