Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 12(48): 30936-30951, 2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36349019

ABSTRACT

The co-evaporation approach was used to examine the host-guest interaction and to explore the cytotoxic and antibacterial properties of an important anti-cancer medication, 6-mercaptopurine monohydrate (6-MP) with ß-cyclodextrin (ß-CD). The UV-Vis investigation confirmed the inclusion complex's (IC) 1 : 1 stoichiometry and was also utilized to oversee the viability of this inclusion process. FTIR, NMR, and XRD, among other spectrometric techniques, revealed the mechanism of molecular interactions between ß-CD and 6-MP which was further hypothesized by DFT to verify tentative outcomes. TGA and DSC studies revealed that 6-MP's thermal stability increased after encapsulation. Because of the protection of drug 6-MP by ß-CD, the formed IC was found to have higher photostability. This work also predicts the release behavior of 6-MP in the presence of CT-DNA without any chemical changes. An evaluation of the complex's antibacterial activity in vitro revealed that it was more effective than pure 6-MP. The in vitro cytotoxic activity against the human kidney cancer cell line (ACHN) was also found to be significant for the IC (IC50 = 4.18 µM) compared to that of pure 6-MP (IC50 = 5.49 µM). These findings suggest that 6-MP incorporation via ß-CD may result in 6-MP stability and effective presentation of its solubility, cytotoxic and antibacterial properties.

2.
Sci Rep ; 11(1): 3032, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33542396

ABSTRACT

Rice (Oryza sativa L.) straw, an agricultural waste of high yield, is a sustainable source of fermentable sugars for biofuel and other chemicals. However, it shows recalcitrance to microbial catalysed depolymerization. We herein describe development of thermotolerant microbial consortium (RSV) from vermicompost with ability to degrade rice straw and analysis of its metagenome for bacterial diversity, and lignocellulolytic carbohydrate active enzymes (CAZymes) and their phylogenetic affiliations. RSV secretome exhibited cellulases and hemicellulases with higher activity at 60 °C. It catalysed depolymerization of chemical pretreated rice straw as revealed by scanning electron microscopy and saccharification yield of 460 mg g-1 rice straw. Microbial diversity of RSV was distinct from other compost habitats, with predominance of members of phyla Firmicutes, Proteobacteria and Bacteroidetes; and Pseudoclostridium, Thermoanaerobacterium, Chelatococcus and Algoriphagus being most abundant genera. RSV harboured 1389 CAZyme encoding ORFs of glycoside hydrolase, carbohydrate esterase, glycosyl transferase, carbohydrate binding module and auxiliary activity functions. Microorganisms of Firmicutes showed central role in lignocellulose deconstruction with importance in hemicellulose degradation; whereas representatives of Proteobacteria and Bacteroidetes contributed to cellulose and lignin degradation, respectively. RSV consortium could be a resource for mining thermotolerant cellulolytic bacteria or enzymes and studying their synergism in deconstruction of chemically pretreated rice straw.


Subject(s)
Biomass , Lignin/chemistry , Metagenome/genetics , Microbial Consortia/genetics , Agriculture , Bacteroidetes/enzymology , Biofuels , Cellulases/chemistry , Cellulases/genetics , Cellulose/chemistry , Firmicutes/enzymology , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/genetics , Humans , Industrial Waste , Lignin/genetics , Oryza/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...