Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 135
Filter
1.
Children (Basel) ; 11(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38929207

ABSTRACT

Objectives: The goal of our study was to determine the incidence of cerebellar atrophy, assess the imaging findings in the posterior fossa and determine the incidence of hippocampal sclerosis in a cohort of pediatric patients with confirmed tuberous sclerosis complex (TSC). Material and methods: MRI studies of 98 TSC pediatric patients (mean age 7.67 years) were evaluated for cerebellar atrophy, cerebral/cerebellar tubers, white matter lesions, subependymal nodules, subependymal giant cell astrocytomas, ventriculomegaly, and hippocampal sclerosis. Clinical charts were revisited for clinical symptoms suggesting cerebellar involvement, for seizures and treatment for seizures, behavioral disorders and autism. Results: Cerebral tubers were present in 97/98 cases. In total, 97/98 had subependymal nodules, 15/98 had SEGA, 8/98 had ventriculomegaly and 4/98 had hippocampal sclerosis. Cerebellar tubers were found in 8/98 patients (8.2%), whereas cerebellar atrophy was described in 38/98 cases (38.8%). In 37/38 patients, cerebellar volume loss was mild and diffuse, and only one case presented with left hemi-atrophy. Briefly, 32/38 presented with seizures and were treated with anti-seizure drugs. In total, 8/38 (21%) presented with behavioral disorders, 10/38 had autism and 2/38 presented with seizures and behavioral disorders and autism. Conclusions: Several studies have demonstrated cerebellar involvement in patients with TSC. Cerebellar tubers differ in shape compared with cerebral tubers and are associated with cerebellar volume loss. Cerebellar atrophy may be focal and diffuse and one of the primary cerebellar manifestations of TSC, especially if a TSC2 mutation is present. Cerebellar degeneration may, however, also be secondary/acquired due to cellular damage resulting from seizure activity, the effects of anti-seizure drugs and anoxic-ischemic injury from severe seizure activity/status epilepticus. Further, prospective studies are required to identify and establish the pathogenic mechanism of cerebellar atrophy in patients with TSC.

2.
Neonatology ; : 1-11, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38838655

ABSTRACT

INTRODUCTION: Brain injury patterns of preterm infants with perinatal asphyxia (PA) are underreported. We aimed to explore brain magnetic resonance imaging (MRI) findings and associated neurodevelopmental outcomes in these newborns. METHODS: Retrospective multicenter study included infants with gestational age (GA) 24.0-36.0 weeks and PA, defined as ≥2 of the following: (1) umbilical cord pH ≤7.0, (2) 5-min Apgar score ≤5, and (3) fetal distress or systemic effects of PA. Findings were compared between GA <28.0 (group 1), 28.0-31.9 (group 2), and 32.0-36.0 weeks (group 3). Early MRI (<36 weeks postmenstrual age or <10 postnatal days) was categorized according to predominant injury pattern, and MRI around term-equivalent age (TEA, 36.0-44.0 weeks and ≥10 postnatal days) using the Kidokoro score. Adverse outcomes included death, cerebral palsy, epilepsy, severe hearing/visual impairment, or neurodevelopment <-1 SD at 18-24 months corrected age. RESULTS: One hundred nineteen infants with early MRI (n = 94) and/or MRI around TEA (n = 66) were included. Early MRI showed predominantly hemorrhagic injury in groups 1 (56%) and 2 (45%), and white matter (WM)/watershed injury in group 3 (43%). Around TEA, WM scores were highest in groups 2 and 3. Deep gray matter (DGM) (aOR 15.0, 95% CI: 3.8-58.9) and hemorrhagic injury on early MRI (aOR 2.5, 95% CI: 1.3-4.6) and Kidokoro WM (aOR 1.3, 95% CI: 1.0-1.6) and DGM sub-scores (aOR 4.8, 95% CI: 1.1-21.7) around TEA were associated with adverse neurodevelopmental outcomes. CONCLUSION: The brain injury patterns following PA in preterm infants differ across GA. Particularly DGM abnormalities are associated with adverse neurodevelopmental outcomes.

3.
Childs Nerv Syst ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862795

ABSTRACT

PURPOSE: The aim of this study was to evaluate the diagnostic value and accuracy of navigated intraoperative ultrasound (iUS) in pediatric oncological neurosurgery as compared to intraoperative magnetic resonance imaging (iMRI). METHODS: A total of 24 pediatric patients undergoing tumor debulking surgery with iUS, iMRI, and neuronavigation were included in this study. Prospective acquisition of iUS images was done at two time points during the surgical procedure: (1) before resection for tumor visualization and (2) after resection for residual tumor assessment. Dice similarity coefficients (DSC), Hausdorff distances 95th percentiles (HD95) and volume differences, sensitivity, and specificity were calculated for iUS segmentations as compared to iMRI. RESULTS: A high correlation (R = 0.99) was found for volume estimation as measured on iUS and iMRI before resection. A good spatial accuracy was demonstrated with a median DSC of 0.72 (IQR 0.14) and a median HD95 percentile of 4.98 mm (IQR 2.22 mm). The assessment after resection demonstrated a sensitivity of 100% and a specificity of 84.6% for residual tumor detection with navigated iUS. A moderate accuracy was observed with a median DSC of 0.58 (IQR 0.27) and a median HD95 of 5.84 mm (IQR 4.04 mm) for residual tumor volumes. CONCLUSION: We found that iUS measurements of tumor volume before resection correlate well with those obtained from preoperative MRI. The accuracy of residual tumor detection was reliable as compared to iMRI, indicating the suitability of iUS for directing the surgeon's attention to areas suspect for residual tumor. Therefore, iUS is considered as a valuable addition to the neurosurgical armamentarium. TRIAL REGISTRATION NUMBER AND DATE: PMCLAB2023.476, February 12th 2024.

4.
Neuroradiology ; 66(8): 1397-1403, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38833161

ABSTRACT

PURPOSE: Incomplete partition type II (IP-II) is characterized by specific histological features and radiological appearance. It may occur in isolation or in association with an enlarged vestibular aqueduct (EVA). Among those with IP-II and EVA, a subset has a diagnosis of Pendred syndrome. This study aimed to explore the prevalence of isolated IP-II, IP-II with EVA, and cases with a genetic or syndromic basis in our cohort. METHODS: From a large, multicentre database of dysplastic cochleae (446 patients, 892 temporal bones), those with imaging features of IP-II were examined in detail, including whether there was a genetic or syndromic association. RESULTS: A total of 78 patients with IP-II were identified. Among these, 55 patients had bilateral IP-II and EVA (only 12 with typical Mondini triad), 8 with bilateral IP-II and normal VA, 2 with bilateral IP-II and unilateral EVA, and 13 with unilateral IP-II (9 with unilateral EVA). Among the group with bilateral IP-II and bilateral EVA in whom genetic analysis was available, 14 out of 29 (48%) had SLC26A4 mutations and a diagnosis of Pendred syndrome, 1 had a FOXI1 mutation, and a few other genetic abnormalities; none had KCNJ10 pathogenic variants. CONCLUSION: Bilateral IP-II-bilateral EVA may be seen in the context of Pendred syndrome (SLC26A4 or FOXI1 mutations) but, in the majority of our cohort, no genetic abnormalities were found, suggesting the possibility of unknown genetic associations. IP-II in isolation (without EVA) is favored to be genetic when bilateral, although the cause is often unknown.


Subject(s)
Hearing Loss, Sensorineural , Vestibular Aqueduct , Humans , Male , Female , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/diagnostic imaging , Child , Adolescent , Adult , Vestibular Aqueduct/diagnostic imaging , Vestibular Aqueduct/abnormalities , Child, Preschool , Middle Aged , Infant , Aged , Mutation , Goiter, Nodular/diagnostic imaging , Goiter, Nodular/genetics , Sulfate Transporters
5.
Neurooncol Adv ; 6(1): vdae026, 2024.
Article in English | MEDLINE | ID: mdl-38476931

ABSTRACT

Background: Pediatric brain tumor patients are at risk of developing neurocognitive impairments and associated white matter alterations. In other populations, post-traumatic stress symptoms (PTSS) impact cognition and white matter. This study aims to investigate the effect of PTSS on neurocognitive functioning and limbic white matter in pediatric brain tumor patients. Methods: Sixty-six patients (6-16 years) completed neuropsychological assessment and brain MRI (1-year post-diagnosis) and parents completed PTSS proxy questionnaires (CRIES-13; 1-3 months and 1-year post-diagnosis). Mean Z-scores and percentage impaired (>1SD) for attention, processing speed, executive functioning, and memory were compared to normscores (t-tests, chi-square tests). Multi-shell diffusion MRI data were analyzed for white matter tractography (fractional anisotropy/axial diffusivity). Effects of PTSS on neurocognition and white matter were explored with linear regression models (FDR correction for multiple testing), including age at diagnosis, treatment intensity, and tumor location as covariates. Neurocognition and limbic white matter associations were explored with correlations. Results: Attention (M = -0.49, 33% impaired; P < .05) and processing speed (M = -0.57, 34% impaired; P < .05) were significantly lower than healthy peers. PTSS was associated with poorer processing speed (ß = -0.64, P < .01). Treatment intensity, age at diagnosis, and tumor location, but not PTSS, were associated with limbic white matter metrics. Neurocognition and white matter metrics were not associated. Conclusions: Higher PTSS was associated with poorer processing speed, highlighting the need for monitoring, and timely referrals to optimize psychological well-being and neurocognitive functioning. Future research should focus on longitudinal follow-up and explore the impact of PTSS interventions on neurocognitive performance.

6.
NMR Biomed ; 37(6): e5122, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38369653

ABSTRACT

Amide proton transfer weighted (APTw) imaging enables in vivo assessment of tissue-bound mobile proteins and peptides through the detection of chemical exchange saturation transfer. Promising applications of APTw imaging have been shown in adult brain tumors. As pediatric brain tumors differ from their adult counterparts, we investigate the radiological appearance of pediatric brain tumors on APTw imaging. APTw imaging was conducted at 3 T. APTw maps were calculated using magnetization transfer ratio asymmetry at 3.5 ppm. First, the repeatability of APTw imaging was assessed in a phantom and in five healthy volunteers by calculating the within-subject coefficient of variation (wCV). APTw images of pediatric brain tumor patients were analyzed retrospectively. APTw levels were compared between solid tumor tissue and normal-appearing white matter (NAWM) and between pediatric high-grade glioma (pHGG) and pediatric low-grade glioma (pLGG) using t-tests. APTw maps were repeatable in supratentorial and infratentorial brain regions (wCV ranged from 11% to 39%), except those from the pontine region (wCV between 39% and 50%). APTw images of 23 children with brain tumor were analyzed (mean age 12 years ± 5, 12 male). Significantly higher APTw values are present in tumor compared with NAWM for both pHGG and pLGG (p < 0.05). APTw values were higher in pLGG subtype pilocytic astrocytoma compared with other pLGG subtypes (p < 0.05). Non-invasive characterization of pediatric brain tumor biology with APTw imaging could aid the radiologist in clinical decision-making.


Subject(s)
Amides , Brain Neoplasms , Phantoms, Imaging , Protons , Humans , Child , Male , Female , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Adolescent , Magnetic Resonance Imaging/methods , Glioma/diagnostic imaging , Glioma/pathology , Reproducibility of Results , Child, Preschool
7.
NMR Biomed ; 37(6): e5124, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38403798

ABSTRACT

Advanced intraoperative MR images (ioMRI) acquired during the resection of pediatric brain tumors could offer additional physiological information to preserve healthy tissue. With this work, we aimed to develop a protocol for ioMRI with increased sensitivity for arterial spin labeling (ASL) and diffusion MRI (dMRI), optimized for patient positioning regularly used in the pediatric neurosurgery setting. For ethical reasons, ASL images were acquired in healthy adult subjects that were imaged in the prone and supine position. After this, the ASL cerebral blood flow (CBF) was quantified and compared between both positions. To evaluate the impact of the RF coils setups on image quality, we compared different setups (two vs. four RF coils) by looking at T1-weighted (T1w) signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), as well as undertaking a qualitative evaluation of T1w, T2w, ASL, and dMR images. Mean ASL CBF did not differ between the surgical prone and supine positions in any of the investigated regions of interest or the whole brain. T1w SNR (gray matter: p = 0.016, 34% increase; white matter: p = 0.016, 32% increase) and CNR were higher (p = 0.016) in the four versus two RF coils setups (18.0 ± 1.8 vs. 13.9 ± 1.8). Qualitative evaluation of T1w, T2w, ASL, and dMR images resulted in acceptable to good image quality and did not differ statistically significantly between setups. Only the nonweighted diffusion image maps and corticospinal tract reconstructions yielded higher image quality and reduced susceptibility artifacts with four RF coils. Advanced ioMRI metrics were more precise with four RF coils as the standard deviation decreased. Taken together, we have investigated the practical use of advanced ioMRI during pediatric neurosurgery. We conclude that ASL CBF quantification in the surgical prone position is valid and that ASL and dMRI acquisition with two RF coils can be performed adequately for clinical use. With four versus two RF coils, the SNR of the images increases, and the sensitivity to artifacts reduces.


Subject(s)
Magnetic Resonance Imaging , Neurosurgical Procedures , Signal-To-Noise Ratio , Humans , Male , Female , Magnetic Resonance Imaging/methods , Child , Adult , Cerebrovascular Circulation/physiology , Spin Labels , Diffusion Magnetic Resonance Imaging , Brain/diagnostic imaging , Brain/surgery
8.
J Clin Med ; 12(24)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38137594

ABSTRACT

BACKGROUND: Magnetic resonance imaging (MRI) including diffusion-weighted imaging within seven days after birth is widely used to obtain prognostic information in neonatal encephalopathy (NE) following perinatal asphyxia. Later MRI could be useful for infants without a neonatal MRI or in the case of clinical concerns during follow-up. Therefore, this review evaluates the association between cranial MRI beyond the neonatal period and neurodevelopmental outcomes following NE. METHODS: A systematic literature search was performed using PubMed and Embase on cranial MRI between 2 and 24 months after birth and neurodevelopmental outcomes following NE due to perinatal asphyxia. Two independent researchers performed the study selection and risk of bias analysis. Results were separately described for MRI before and after 18 months. RESULTS: Twelve studies were included (high-quality n = 2, moderate-quality n = 6, low-quality n = 4). All reported on MRI at 2-18 months: seven studies demonstrated a significant association between the pattern and/or severity of injury and overall neurodevelopmental outcomes and three showed a significant association with motor outcome. There were insufficient data on non-motor outcomes and the association between MRI at 18-24 months and neurodevelopmental outcomes. CONCLUSIONS: Cranial MRI performed between 2 and 18 months after birth is associated with neurodevelopmental outcomes in NE following perinatal asphyxia. However, more data on the association with non-motor outcomes are needed.

9.
Front Endocrinol (Lausanne) ; 14: 1225734, 2023.
Article in English | MEDLINE | ID: mdl-37886643

ABSTRACT

We present the case of a 15-year-old girl, with a fifth cystic progression of an adamantinomatous craniopharyngioma after multiple surgeries and previous local radiotherapy. She had severe visual impairment, panhypopituitarism including diabetes insipidus, and several components of hypothalamic damage, including morbid obesity and severe fatigue. To prevent further late effects hampering her quality of survival, she was treated biweekly with intravenous tocilizumab, an anti-interleukin-6 agent, which stabilized the cyst for a prolonged time. Based on the biology of adamantinomatous craniopharyngioma, this immune-modulating treatment seems promising for the treatment of this cystic tumor in order to reduce surgery and delay or omit radiotherapy.


Subject(s)
Craniopharyngioma , Hypopituitarism , Pituitary Neoplasms , Humans , Female , Child , Adolescent , Craniopharyngioma/complications , Craniopharyngioma/drug therapy , Pituitary Neoplasms/complications , Pituitary Neoplasms/drug therapy , Pituitary Neoplasms/pathology , Hypothalamus/pathology , Hypopituitarism/pathology
10.
Schizophrenia (Heidelb) ; 9(1): 48, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37528127

ABSTRACT

While the frontal cortices and medial temporal lobe are well associated with schizophrenia, the involvement of wider limbic areas is less clear. The mammillary bodies are important for both complex memory formation and anxiety and are implicated in several neurological disorders that present with memory impairments. However, little is known about their role in schizophrenia. Post-mortem studies have reported a loss of neurons in the mammillary bodies but there are also reports of increased mammillary body volume. The findings from in vivo MRI studies have also been mixed, but studies have typically only involved small sample sizes. To address this, we acquired mammillary body volumes from the open-source COBRE dataset, where we were able to manually measure the mammillary bodies in 72 individuals with a schizophrenia diagnosis and 74 controls. Participant age ranged from 18 to 65. We found the mammillary bodies to be smaller in the patient group, across both hemispheres, after accounting for the effects of total brain volume and gender. Hippocampal volumes, but not subiculum or total grey matter volumes, were also significantly lower in patients. Given the importance of the mammillary bodies for both memory and anxiety, this atrophy could contribute to the symptomology in schizophrenia.

11.
Front Physiol ; 14: 1098959, 2023.
Article in English | MEDLINE | ID: mdl-37123260

ABSTRACT

Introduction: In the pediatric brain tumor surgery setting, intraoperative MRI (ioMRI) provides "real-time" imaging, allowing for evaluation of the extent of resection and detection of complications. The use of advanced MRI sequences could potentially provide additional physiological information that may aid in the preservation of healthy brain regions. This review aims to determine the added value of advanced imaging in ioMRI for pediatric brain tumor surgery compared to conventional imaging. Methods: Our systematic literature search identified relevant articles on PubMed using keywords associated with pediatrics, ioMRI, and brain tumors. The literature search was extended using the snowball technique to gather more information on advanced MRI techniques, their technical background, their use in adult ioMRI, and their use in routine pediatric brain tumor care. Results: The available literature was sparse and demonstrated that advanced sequences were used to reconstruct fibers to prevent damage to important structures, provide information on relative cerebral blood flow or abnormal metabolites, or to indicate the onset of hemorrhage or ischemic infarcts. The explorative literature search revealed developments within each advanced MRI field, such as multi-shell diffusion MRI, arterial spin labeling, and amide-proton transfer-weighted imaging, that have been studied in adult ioMRI but have not yet been applied in pediatrics. These techniques could have the potential to provide more accurate fiber tractography, information on intraoperative cerebral perfusion, and to match gadolinium-based T1w images without using a contrast agent. Conclusion: The potential added value of advanced MRI in the intraoperative setting for pediatric brain tumors is to prevent damage to important structures, to provide additional physiological or metabolic information, or to indicate the onset of postoperative changes. Current developments within various advanced ioMRI sequences are promising with regard to providing in-depth tissue information.

12.
J Pediatr ; 258: 113402, 2023 07.
Article in English | MEDLINE | ID: mdl-37019329

ABSTRACT

OBJECTIVE: To assess the evolution of neonatal brain injury noted on magnetic resonance imaging (MRI), develop a score to assess brain injury on 3-month MRI, and determine the association of 3-month MRI with neurodevelopmental outcome in neonatal encephalopathy (NE) following perinatal asphyxia. METHODS: This was a retrospective, single-center study including 63 infants with perinatal asphyxia and NE (n = 28 cooled) with cranial MRI <2 weeks and 2-4 months after birth. Both scans were assessed using biometrics, a validated injury score for neonatal MRI, and a new score for 3-month MRI, with a white matter (WM), deep gray matter (DGM), and cerebellum subscore. The evolution of brain lesions was assessed, and both scans were related to 18- to 24-month composite outcome. Adverse outcome included cerebral palsy, neurodevelopmental delay, hearing/visual impairment, and epilepsy. RESULTS: Neonatal DGM injury generally evolved into DGM atrophy and focal signal abnormalities, and WM/watershed injury evolved into WM and/or cortical atrophy. Although the neonatal total and DGM scores were associated with composite adverse outcomes, the 3-month DGM score (OR 1.5, 95% CI 1.2-2.0) and WM score (OR 1.1, 95% CI 1.0-1.3) also were associated with composite adverse outcomes (occurring in n = 23). The 3-month multivariable model (including the DGM and WM subscores) had higher positive (0.88 vs 0.83) but lower negative predictive value (0.83 vs 0.84) than neonatal MRI. Inter-rater agreement for the total, WM, and DGM 3-month score was 0.93, 0.86, and 0.59. CONCLUSIONS: In particular, DGM abnormalities on 3-month MRI, preceded by DGM abnormalities on the neonatal MRI, were associated with 18- to 24-month outcome, indicating the utility of 3-month MRI for treatment evaluation in neuroprotective trials. However, the clinical usefulness of 3-month MRI seems limited compared with neonatal MRI.


Subject(s)
Asphyxia Neonatorum , Brain Injuries , Infant, Newborn, Diseases , Infant, Newborn , Pregnancy , Female , Infant , Humans , Retrospective Studies , Asphyxia/complications , Magnetic Resonance Imaging/methods , Asphyxia Neonatorum/complications , Asphyxia Neonatorum/diagnostic imaging , Brain Injuries/pathology , Atrophy/pathology , Brain/diagnostic imaging , Brain/pathology
13.
Am J Hum Genet ; 110(1): 146-160, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36608681

ABSTRACT

Neddylation has been implicated in various cellular pathways and in the pathophysiology of numerous diseases. We identified four individuals with bi-allelic variants in NAE1, which encodes the neddylation E1 enzyme. Pathogenicity was supported by decreased NAE1 abundance and overlapping clinical and cellular phenotypes. To delineate how cellular consequences of NAE1 deficiency would lead to the clinical phenotype, we focused primarily on the rarest phenotypic features, based on the assumption that these would best reflect the pathophysiology at stake. Two of the rarest features, neuronal loss and lymphopenia worsening during infections, suggest that NAE1 is required during cellular stress caused by infections to protect against cell death. In support, we found that stressing the proteasome system with MG132-requiring upregulation of neddylation to restore proteasomal function and proteasomal stress-led to increased cell death in fibroblasts of individuals with NAE1 genetic variants. Additionally, we found decreased lymphocyte counts after CD3/CD28 stimulation and decreased NF-κB translocation in individuals with NAE1 variants. The rarest phenotypic feature-delayed closure of the ischiopubic rami-correlated with significant downregulation of RUN2X and SOX9 expression in transcriptomic data of fibroblasts. Both genes are involved in the pathophysiology of ischiopubic hypoplasia. Thus, we show that NAE1 plays a major role in (skeletal) development and cellular homeostasis during stress. Our approach suggests that a focus on rare phenotypic features is able to provide significant pathophysiological insights in diseases caused by mutations in genes with pleiotropic effects.


Subject(s)
Intellectual Disability , Lymphopenia , Humans , NEDD8 Protein/genetics , NEDD8 Protein/metabolism , Signal Transduction/genetics , Intellectual Disability/genetics , NF-kappa B/metabolism , Proteasome Endopeptidase Complex/metabolism , Lymphopenia/genetics
14.
Dev Med Child Neurol ; 65(6): 792-802, 2023 06.
Article in English | MEDLINE | ID: mdl-36335569

ABSTRACT

AIM: To evaluate mammillary body abnormalities in school-age children without cerebral palsy treated with therapeutic hypothermia for neonatal hypoxic-ischaemic encephalopathy (cases) and matched controls, and associations with cognitive outcome, hippocampal volume, and diffusivity in the mammillothalamic tract (MTT) and fornix. METHOD: Mammillary body abnormalities were scored from T1-weighted magnetic resonance imaging (MRI) in 32 cases and 35 controls (median age [interquartile range] 7 years [6 years 7 months-7 years 7 months] and 7 years 4 months [6 years 7 months-7 years 7 months] respectively). Cognition was assessed using the Wechsler Intelligence Scale for Children, Fourth Edition. Hippocampal volume (normalized by total brain volume) was measured from T1-weighted MRI. Radial diffusivity and fractional anisotropy were measured in the MTT and fornix, from diffusion-weighted MRI using deterministic tractography. RESULTS: More cases than controls had mammillary body abnormalities (34% vs 0%; p < 0.001). Cases with abnormal mammillary bodies had lower processing speed (p = 0.016) and full-scale IQ (p = 0.028) than cases without abnormal mammillary bodies, and lower scores than controls in all cognitive domains (p < 0.05). Cases with abnormal mammillary bodies had smaller hippocampi (left p = 0.016; right p = 0.004) and increased radial diffusivity in the right MTT (p = 0.004) compared with cases without mammillary body abnormalities. INTERPRETATION: Cooled children with mammillary body abnormalities at school-age have reduced cognitive scores, smaller hippocampi, and altered MTT microstructure compared with those without mammillary body abnormalities, and matched controls. WHAT THIS PAPER ADDS: Cooled children are at higher risk of mammillary body abnormalities than controls. Abnormal mammillary bodies are associated with reduced cognitive scores and smaller hippocampi. Abnormal mammillary bodies are associated with altered mammillothalamic tract diffusivity.


Subject(s)
Brain Diseases , Infant, Newborn, Diseases , Infant, Newborn , Humans , Child , Infant , Mammillary Bodies/diagnostic imaging , Mammillary Bodies/pathology , Fornix, Brain/pathology , Diffusion Magnetic Resonance Imaging , Cognition , Magnetic Resonance Imaging
15.
Cancers (Basel) ; 14(24)2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36551572

ABSTRACT

BACKGROUNDS: Bevacizumab (BVZ) is used as a subsequent line of treatment for pediatric optic pathway glioma (OPG) in the case of progression. Data on the treatment effect concerning tumor progression and visual function are scarce and nationwide studies are lacking. METHODS: We performed a retrospective, nationwide, multicentre cohort study including all pediatric patients with OPG treated with BVZ in the Netherlands (2009-2021). Progression-free survival, change in visual acuity and visual field, MRI-based radiologic response, and toxicity were evaluated. RESULTS: In total, 33 pediatric patients with OPG were treated with BVZ (median 12 months). Visual acuity improved in 20.5%, remained stable in 74.4%, and decreased in 5.1% of 39 of all analysed eyes. The monocular visual field improved in 73.1%, remained stable in 15.4%, and decreased in 7.7% of 25 analysed eyes. Radiologic response at the end of therapy showed a partial response in 7 patients (21.9%), minor response in 7 (21.9%), stable disease in 15 (46.9%), and progressive disease in 3 (9.3%). Progression-free survival at 18 and 36 months after the start of BVZ reduced from 70.9% to 38.0%. Toxicity (≥grade 3 CTCAE) during treatment was observed in five patients (15.2%). CONCLUSION: Treatment of BVZ in pediatric patients with OPG revealed stabilisation in the majority of patients, but was followed by progression at a later time point in more than 60% of patients. This profile seems relatively acceptable given the benefits of visual field improvement in more than 70% of analysed eyes and visual acuity improvement in more than 20% of eyes at the cessation of BVZ.

16.
Neuroimage Rep ; 2(4): None, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36507070

ABSTRACT

The mammillary bodies may be small, but they have an important role in encoding complex memories. Mammillary body pathology often occurs following thiamine deficiency but there is increasing evidence that the mammillary bodies are also compromised in other neurological conditions and in younger ages groups. For example, the mammillary bodies are frequently affected in neonates with hypoxic-ischemic encephalopathy. At present, there is no normative data for the mammillary bodies in younger groups making it difficult to identify abnormalities in neurological disorders. To address this, the present study set out to develop a normative dataset for neonates and for children to young adult. A further aim was to determine whether there were laterality or sex differences in mammillary body volumes. Mammillary body volumes were obtained from MRI scans from 506 participants across two datasets. Measures for neonates were acquired from the Developing Human Connectome Project database (156 male; 100 female); volumes for individuals aged 6-24 were acquired from the NICHE database (166 males; 84 females). Volume measurements were acquired using a semi-automated multi-atlas segmentation approach. Mammillary body volumes increased up to approximately 15 years-of-age. The left mammillary body was marginally, but significantly, larger than the right in the neonates with a similar pattern in older children/young adults. In neonates, the mammillary bodies in males were slightly bigger than females but no sex differences were present in older children/young adults. Given the increasing presentation of mammillary body pathology in neonates and children, these normative data will enable better assessment of the mammillary bodies in healthy and at-risk populations.

17.
Clin Transl Radiat Oncol ; 35: 44-55, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35601799

ABSTRACT

Radiotherapy (RT) is a cornerstone treatment strategy for brain tumours. Besides cytotoxicity, RT can cause disruption of the blood-brain barrier (BBB), resulting in an increased permeability into the surrounding brain parenchyma. Although this effect is generally acknowledged, it remains unclear how and to what extent different radiation schemes affect BBB integrity. The aim of this systematic review and meta-analysis is to investigate the effect of photon RT regimens on BBB permeability, including its reversibility, in clinical and preclinical studies. We systematically reviewed relevant clinical and preclinical literature in PubMed, Embase, and Cochrane search engines. A total of 69 included studies (20 clinical, 49 preclinical) were qualitatively and quantitatively analysed by meta-analysis and evaluated on key determinants of RT-induced BBB permeability in different disease types and RT protocols. Qualitative data synthesis showed that 35% of the included clinical studies reported BBB disruption following RT, whereas 30% were inconclusive. Interestingly, no compelling differences were observed between studies with different calculated biological effective doses based on the fractionation schemes and cumulative doses; however, increased BBB disruption was noted during patient follow-up after treatment. Qualitative analysis of preclinical studies showed RT BBB disruption in 78% of the included studies, which was significantly confirmed by meta-analysis (p < 0.01). Of note, a high risk of bias, publication bias and a high heterogeneity across the studies was observed. This systematic review and meta-analysis sheds light on the impact of RT protocols on BBB integrity and opens the discussion for integrating this factor in the decision-making process of future RT, with better study of its occurrence and influence on concomitant or adjuvant therapies.

18.
J Pediatr ; 245: 30-38.e1, 2022 06.
Article in English | MEDLINE | ID: mdl-35120986

ABSTRACT

OBJECTIVE: To determine the incidence of hypoglycemia among infants with hypoxic-ischemic encephalopathy (HIE) who received therapeutic hypothermia, and to assess whether infants with hypoglycemia had more brain injury on magnetic resonance imaging (MRI) or differences in neurodevelopmental outcome. STUDY DESIGN: Single-center, retrospective cohort study including infants cooled for HIE. Hypoglycemia (blood glucose <36.0 mg/dL <2 hours and <46.8 mg/dL ≥2 hours after birth) was analyzed in the period before brain MRI. Brain injury was graded using a validated score. Motor and neurocognitive outcomes were assessed at 2 years for all survivors, and 5.5 years for a subset who had reached this age. RESULTS: Of 223 infants analyzed, 79 (35.4%) had hypoglycemia. MRI was performed in 187 infants. Infants with hypoglycemia (n = 65) had higher brain injury scores (P = .018). After adjustment for HIE severity, hypoglycemia remained associated with higher injury scores (3.6 points higher; 95% CI, 0.8-6.4). Hyperglycemia did not affect MRI scores. In survivors at 2 years (n = 154) and 5.5 years (n = 102), a univariable analysis showed lower 2-year motor scores and lower motor and cognitive scores at preschool age in infants with hypoglycemia. After adjustment for HIE severity, infants with hypoglycemia had 9 points lower IQs (P = .023) and higher odds of adverse outcomes at preschool age (3.6; 95% CI, 1.4-9.0). CONCLUSIONS: More than one-third of infants cooled for HIE had hypoglycemia. These infants had a higher degree of brain injury on MRI and lower cognitive function at preschool age. Strategies to avoid hypoglycemia should be optimized in this setting.


Subject(s)
Brain Injuries , Hypoglycemia , Hypothermia, Induced , Hypoxia-Ischemia, Brain , Brain Injuries/complications , Brain Injuries/therapy , Child, Preschool , Humans , Hypoglycemia/complications , Hypoglycemia/epidemiology , Hypothermia, Induced/methods , Hypoxia-Ischemia, Brain/complications , Hypoxia-Ischemia, Brain/therapy , Infant , Magnetic Resonance Imaging/methods , Retrospective Studies
19.
Neurology ; 98(12): e1216-e1225, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35101906

ABSTRACT

BACKGROUND AND OBJECTIVES: Multiple factors have been found to contribute to the high risk of epilepsy in infants with tuberous sclerosis complex (TSC), including evolution of EEG abnormalities, TSC gene variant, and MRI characteristics. The aim of this prospective multicenter study was to identify early MRI biomarkers of epilepsy in infants with TSC aged <6 months and before seizure onset, and associate these MRI biomarkers with neurodevelopmental outcomes at 2 years of age. The study was part of the EPISTOP project. METHODS: We evaluated brain MRIs performed in infants younger than 6 months with TSC. We used harmonized MRI protocols across centers and children were monitored closely with neuropsychological evaluation and serial video EEG. MRI characteristics, defined as tubers, radial migration lines, white matter abnormalities, cysts, calcifications, subependymal nodules (SEN), and subependymal giant cell astrocytoma (SEGA), were visually evaluated and lesions were detected semiautomatically. Lesion to brain volume ratios were calculated and associated with epilepsy and neurodevelopmental outcomes at 2 years. RESULTS: Lesions were assessed on MRIs from 77 infants with TSC; 62 MRIs were sufficient for volume analysis. The presence of tubers and higher tuber-brain ratios were associated with the development of clinical seizures, independently of TSC gene variation and preventive treatment. Furthermore, higher tuber-brain ratios were associated with lower cognitive and motor development quotients at 2 years, independently of TSC gene variation and presence of epilepsy. DISCUSSION: In infants with TSC, there is a significant association between characteristic TSC lesions detected on early brain MRI and development of clinical seizures, as well as neurodevelopmental outcomes in the first 2 years of life. According to our results, early brain MRI findings may guide clinical care for young children with TSC. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that in infants with TSC, there is a significant association between characteristic TSC lesions on early brain MRI and the development of clinical seizures and neurodevelopmental outcomes in the first 2 years of life.


Subject(s)
Epilepsy , Tuberous Sclerosis , Child , Child, Preschool , Epilepsy/complications , Epilepsy/etiology , Humans , Infant , Magnetic Resonance Imaging , Prospective Studies , Seizures/complications , Tuberous Sclerosis/complications , Tuberous Sclerosis/diagnostic imaging , Tuberous Sclerosis/genetics
20.
Pediatr Res ; 92(1): 174-179, 2022 07.
Article in English | MEDLINE | ID: mdl-33654286

ABSTRACT

BACKGROUND: The mammillary bodies (MBs) have repeatedly been shown to be critical for memory, yet little is known about their involvement in numerous neurological conditions linked to memory impairments, including neonatal encephalopathy. METHODS: We implemented a multicentre retrospective study, assessing magnetic resonance scans of 219 infants with neonatal encephalopathy who had undergone hypothermia treatment in neonatal intensive care units located in the Netherlands and Italy. RESULTS: Abnormal MB signal was observed in ~40% of infants scanned; in half of these cases, the brain appeared otherwise normal. MB involvement was not related to the severity of encephalopathy or the pattern/severity of hypoxic-ischaemic brain injury. Follow-up scans were available for 18 cases with abnormal MB signal; in eight of these cases, the MBs appeared severely atrophic. CONCLUSIONS: This study highlights the importance of assessing the status of the MBs in neonatal encephalopathy; this may require changes to scanning protocols to ensure that the slices are sufficiently thin to capture the MBs. Furthermore, long-term follow-up of infants with abnormal MB signal is needed to determine the effects on cognition, which may enable the use of early intervention strategies. Further research is needed to assess the role of therapeutic hypothermia in MB involvement in neonatal encephalopathy. IMPACT: The MBs are particularly sensitive to hypoxia in neonates. Current hypothermia treatment provides incomplete protection against MB injury. MB involvement is likely overlooked as it can often occur when the rest of the brain appears normal. Given the importance of the MBs for memory, it is necessary that this region is properly assessed in neonatal encephalopathy. This may require improvements in scanning protocols.


Subject(s)
Hypothermia, Induced , Hypothermia , Hypoxia-Ischemia, Brain , Infant, Newborn, Diseases , Humans , Hypothermia/therapy , Hypothermia, Induced/methods , Hypoxia-Ischemia, Brain/complications , Hypoxia-Ischemia, Brain/diagnostic imaging , Hypoxia-Ischemia, Brain/therapy , Infant , Infant, Newborn , Infant, Newborn, Diseases/therapy , Mammillary Bodies , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...