Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
Add more filters










Publication year range
1.
Biochimie ; 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38280504

ABSTRACT

Overexpression of recombinant Bacillus cereus TSPO (BcTSPO) in E. coli bacteria leads to its recovery with a bound hemin both in bacterial membrane (MB) and inclusion bodies (IB). Unlike mouse TSPO, BcTSPO purified in SDS detergent from IB is well structured and can bind various ligands such as high-affinity PK 11195, protoporphyrin IX (PPIX) and δ-aminolevulinic acid (ALA). For each of the three ligands, 1H-15N HSQC titration NMR experiments suggest that different amino acids of BcTSPO binding cavity are involved in the interaction. PPIX, an intermediate of heme biosynthesis, binds to the cavity of BcTSPO and its fluorescence can be significantly reduced in the presence of light and oxygen. The light irradiation leads to two products that have been isolated and characterized as photoporphyrins. They result from the addition of singlet oxygen to the two vinyl groups hence leading to the formation of hydroxyaldehydes. The involvement of water molecules, recently observed along with the binding of heme in Rhodobacter sphaeroides (RsTSPO) is highly probable. Altogether, these results raise the question of the role of TSPO in heme biosynthesis regulation as a possible scavenger of reactive intermediates.

2.
J Enzyme Inhib Med Chem ; 38(1): 2254019, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37735942

ABSTRACT

Oxytocin (OT) is a neurohypophyseal peptide hormone containing a disulphide-bridged pseudocyclic conformation. The biomedical use of OT peptides is limited amongst others by disadvantageous pharmacokinetic parameters. To increase the stability of OT by replacing the disulphide bridge with the stable and more rigid [1,2,3]triazol-1-yl moiety, we employed the Cu2+-catalysed side chain-to-side chain azide-alkyne 1,3-cycloaddition. Here we report the design, synthesis, conformational analysis, and in vitro pharmacological activity of a homologous series of Cα1-to-Cα6 side chain-to-side chain [1,2,3]triazol-1-yl-containing OT analogues differing in the length of the bridge, location, and orientation of the linking moiety. Exploiting this macrocyclisation approach, it was possible to generate a systematic series of compounds providing interesting insight into the structure-conformation-function relationship of OT. Most analogues were able to adopt similar conformation to endogenous OT in water, namely, a type I ß-turn. This approach may in the future generate stabilised pharmacological peptide tools to advance understanding of OT physiology.


Subject(s)
Alkynes , Oxytocin , Oxytocin/pharmacology , Azides , Catalysis , Disulfides
3.
Nat Commun ; 14(1): 1998, 2023 04 10.
Article in English | MEDLINE | ID: mdl-37032404

ABSTRACT

Engrailed2 (En2) is a transcription factor that transfers from cell to cell through unconventional pathways. The poorly understood internalization mechanism of this cationic protein is proposed to require an initial interaction with cell-surface glycosaminoglycans (GAGs). To decipher the role of GAGs in En2 internalization, we have quantified the entry of its homeodomain region in model cells that differ in their content in cell-surface GAGs. The binding specificity to GAGs and the influence of this interaction on the structure and dynamics of En2 was also investigated at the amino acid level. Our results show that a high-affinity GAG-binding sequence (RKPKKKNPNKEDKRPR), upstream of the homeodomain, controls En2 internalization through selective interactions with highly-sulfated heparan sulfate GAGs. Our data underline the functional importance of the intrinsically disordered basic region upstream of En2 internalization domain, and demonstrate the critical role of GAGs as an entry gate, finely tuning homeoprotein capacity to internalize into cells.


Subject(s)
Glycosaminoglycans , Heparitin Sulfate , Heparitin Sulfate/metabolism , Glycosaminoglycans/metabolism , Transcription Factors , Homeodomain Proteins/genetics , Sulfates , Chondroitin Sulfates/metabolism
4.
Org Biomol Chem ; 20(43): 8430-8437, 2022 11 09.
Article in English | MEDLINE | ID: mdl-36040477

ABSTRACT

Studies on the synthetic methodologies and the structural propensity of peptides containing consecutive aza-amino acids are still in their infancy. Here, details of the synthesis and conformational analysis of tripeptides containing two consecutive aza-amino acids are provided. The demonstration that the type I ß-turn folding is induced, even in aqueous media, by the introduction of one or two lateral chains on the diaza-peptide unit is of particular importance for the design of peptidomimetics of biological interest.


Subject(s)
Amino Acids , Peptidomimetics , Amino Acids/chemistry , Water , Peptides/chemistry , Molecular Conformation
5.
J Am Chem Soc ; 144(32): 14627-14637, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35916199

ABSTRACT

Cylindrospermopsin, a major cyanotoxin, is produced by freshwater cyanobacteria. Its biosynthesis starts from arginine and glycine and involves five polyketide synthases and several tailoring enzymes. We report the identification of 7-deoxy-desulfo-argino-cylindrospermopsin in several cylindrospermopsin-producing cyanobacteria using mass spectrometry experiments. We have purified this new metabolite and established its structure by 1D and 2D NMR spectroscopy using scalar-based 1H-1H, 1H-13C, and 1H-15N as well as 2D 1H-1H ROESY correlation experiments. Using labeled arginines in isotopic incorporation experiments, we have shown that arginine is fully incorporated into 7-deoxy-desulfo-argino-cylindrospermopsin and that the uracil ring of cylindrospermopsin originates from the guanidino moiety of arginine, thus solving a long-standing puzzling question. CyrG and CyrH from the cylindrospermopsin-producing Oscillatoria sp. PCC 6506 were overproduced in Escherichia coli and purified to homogeneity. We showed that CyrG is a zinc-dependent hydrolase, homologous to adenosine deaminases, that transforms 7-deoxy-desulfo-argino-cylindrospermopsin into 7-deoxy-desulfo-cylindrospermopsin and ornithine, with the following kinetic parameters: KM = 0.21 ± 0.05 µM and kcat = 0.19 ± 0.02 min-1. CyrG contained 0.55 mol of zinc per mol of monomer but could be activated by FeII or CoII. CyrH contained almost no metal and showed no such activity even in the presence of excess metal. Using structure-based alignments and secondary structure predictions, we propose that the fifth and last polyketide synthase CyrF in cylindrospermopsin biosynthesis contains an unprecedented C-terminal domain homologous to N-acetyltransferases. We suggest that this domain catalyzes the condensation of the CyrF product with arginine to give 7-deoxy-desulfo-argino-cylindrospermopsin. This would be an unprecedented termination step for a polyketide synthase.


Subject(s)
Bacterial Toxins , Cyanobacteria , Arginine/metabolism , Bacterial Toxins/chemistry , Cyanobacteria/metabolism , Cyanobacteria Toxins , Polyketide Synthases/metabolism , Uracil/chemistry , Zinc/metabolism
6.
Biochim Biophys Acta Biomembr ; 1864(11): 184030, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35988722

ABSTRACT

Homeoprotein transcription factors have the property of interacting with membranes through their DNA-binding homeodomain, which is involved in unconventional internalization and secretion. Both processes depend on membrane-translocating events but their detailed molecular mechanisms are still poorly understood. We have previously characterized the conformational properties of Engrailed 2 homeodomain (EnHD) in aqueous solution and in micelles as membrane-mimetic environments. In the present study, we used small isotropic lipid bicelles as a more relevant membrane-mimetic model to characterize the membrane-bound state of EnHD. We show that lipid bicelles, in contrast to micelles, adequately reproduce the requirement of anionic lipids in the membrane binding and conformational transition of EnHD. The fold-unfold transition of EnHD induced by anionic lipids was characterized by NMR using 1H, 13C, 15N chemical shifts, nuclear Overhauser effects, residual dipolar couplings, intramolecular and intermolecular paramagnetic relaxation enhancements induced by site-directed spin-label or paramagnetic lipid probe, respectively. A global unpacking of EnHD helices is observed leading to a loss of the native fold. However, near-native propensities of EnHD backbone conformation are maintained in membrane environment, including not only the three helices but also the turn connecting helices H2 and H3. NMR and coarse-grained molecular dynamics simulations reveal that the EnHD adopts a shallow insertion in the membrane, with the three helices oriented parallel to the membrane. EnHD explores extended conformations and closed U-shaped conformations, which are stabilized by anionic lipid recruitment.


Subject(s)
Micelles , Molecular Dynamics Simulation , Homeodomain Proteins/chemistry , Lipids , Protein Structure, Secondary
7.
J Med Chem ; 65(9): 6953-6968, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35500280

ABSTRACT

In preclinical models, the development and optimization of protein-drug conjugates require accurate determination of the plasma and tissue profiles of both the protein and its conjugated drug. To this aim, we developed a bioanalytical strategy based on dual radiolabeling and ex vivo digital imaging. By combining enzymatic and chemical reactions, we obtained homogeneous dual-labeled anti-MMP-14 Fabs (antigen-binding fragments) conjugated to monomethyl auristatin E where the protein scaffold was labeled with carbon-14 (14C) and the conjugated drug with tritium (3H). These antibody-drug conjugates with either a noncleavable or a cleavable linker were then evaluated in vivo. By combining liquid scintillation counting and ex vivo dual-isotope radio-imaging, it was possible not only to monitor both components simultaneously during their circulation phase but also to quantify accurately their amount accumulated within the different organs.


Subject(s)
Immunoconjugates , Carbon Radioisotopes
8.
ACS Chem Biol ; 17(6): 1427-1439, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35608167

ABSTRACT

Cell-penetrating peptides cross cell membranes through various parallel internalization pathways. Herein, we analyze the role of the negatively charged lipid phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) in the internalization of Penetratin. Contributions of both inner leaflet and outer leaflet pools of PI(4,5)P2 were revealed by quantifying the internalization of Penetratin in cells treated with PI(4,5)P2 binders. Studies on model systems showed that Penetratin has a strong affinity for PI(4,5)P2 and interacts selectively with this lipid, even in the presence of other negatively charged lipids, as demonstrated by affinity photo-crosslinking experiments. Differential scanning calorimetry experiments showed that Penetratin induces lateral segregation in PI(4,5)P2-containing liposomes, which was confirmed by coarse-grained molecular dynamics simulations. NMR experiments indicated that Penetratin adopts a stabilized helical conformation in the presence of PI(4,5)P2-containing membranes, with an orientation parallel to the bilayer plane, which was also confirmed by all-atom simulations. NMR and photo-crosslinking experiments also suggest a rather shallow insertion of the peptide in the membrane. Put together, our findings suggest that PI(4,5)P2 is a privileged interaction partner for Penetratin and that it plays an important role in Penetratin internalization.


Subject(s)
Cell-Penetrating Peptides , Carrier Proteins/metabolism , Cell-Penetrating Peptides/metabolism , Phosphatidylinositols , Protein Binding
9.
Chemistry ; 28(8): e202103887, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-34890083

ABSTRACT

Oligomers of α-aminoisobutyric acid (Aib) are achiral peptides that adopt 310 helical structures with equal population of left- and right-handed conformers. The screw-sense preference of the helical chain may be controlled by a single chiral residue located at one terminus. 1 H and 19 F NMR, X-ray crystallography and circular dichroism studies on new Aib oligomers show that the incorporation of a chiral quaternary α-trifluoromethylalanine at their N-terminus induces a reversal of the screw-sense preference of the 310 -helix compared to that of a non-fluorinated analogue having an l-α-methyl valine residue. This work demonstrates that, among the many particular properties of introducing a trifluoromethyl group into foldamers, its stereo-electronic properties are of major interest to control the helical screw sense. Its use as an easy-to-handle 19 F NMR probe to reliably determine both the magnitude of the screw-sense preference and its sign assignment is also of remarkable interest.


Subject(s)
Alanine , Bone Screws , Alanine/analogs & derivatives , Circular Dichroism , Models, Molecular , Protein Structure, Secondary
10.
Int J Mol Sci ; 22(21)2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34768734

ABSTRACT

Prostate cancer is the most common cancer in men. For patients with advanced or metastatic prostate cancer, available treatments can slow down its progression but cannot cure it. The development of innovative drugs resulting from the exploration of biodiversity could open new therapeutic alternatives. Dermaseptin-B2, a natural multifunctional antimicrobial peptide isolated from Amazonian frog skin, has been reported to possess antitumor activity. To improve its pharmacological properties and to decrease its peripheral toxicity and lethality we developed a hormonotoxin molecule composed of dermaseptin-B2 combined with d-Lys6-LHRH to target the LHRH receptor. This hormonotoxin has a significant antiproliferative effect on the PC3 tumor cell line, with an IC50 value close to that of dermaseptin-B2. Its antitumor activity has been confirmed in vivo in a xenograft mouse model with PC3 tumors and appears to be better tolerated than dermaseptin-B2. Biophysical experiments showed that the addition of LHRH to dermaseptin-B2 did not alter its secondary structure or biological activity. The combination of different experimental approaches indicated that this hormonotoxin induces cell death by an apoptotic mechanism instead of necrosis, as observed for dermaseptin-B2. These results could explain the lower toxicity observed for this hormonotoxin compared to dermaseptin-B2 and may represent a promising targeting approach for cancer therapy.


Subject(s)
Amphibian Proteins/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Cell Line, Tumor/drug effects , Amino Acid Sequence , Amphibian Proteins/metabolism , Animals , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/metabolism , Antimicrobial Peptides/metabolism , Antimicrobial Peptides/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Movement/drug effects , Cell Survival/drug effects , Gonadotropin-Releasing Hormone/analogs & derivatives , Gonadotropin-Releasing Hormone/metabolism , Gonadotropin-Releasing Hormone/pharmacology , Humans , Immunologic Factors/metabolism , Mice , Mice, Nude , Neoplasms/drug therapy , Neoplasms/metabolism , Xenograft Model Antitumor Assays
11.
Angew Chem Int Ed Engl ; 60(33): 18272-18279, 2021 08 09.
Article in English | MEDLINE | ID: mdl-34096148

ABSTRACT

Activity-based probes enable discrimination between the active enzyme and its inactive or inactivated counterparts. Since metalloproteases catalysis is non-covalent, activity-based probes targeting them have been systematically developed by decorating reversible inhibitors with photo-crosslinkers. By exploiting two types of ligand-guided chemistry, we identified novel activity-based probes capable of covalently modifying the active site of matrix metalloproteases (MMPs) without any external trigger. The ability of these probes to label recombinant MMPs was validated in vitro and the identity of the main labelling sites within their S3 ' region unambiguously assigned. We also demonstrated that our affinity probes can react with rhMMP12 at nanogram scale (that is, at 0.07 % (w/w)) in complex proteomes. Finally, this ligand-directed chemistry was successfully applied to label active MMP-12 secreted by eukaryote cells. We believe that this approach could be transferred more widely to many other metalloproteases, thus contributing to tackle their unresolved proteomic profiling in vivo.

12.
Commun Biol ; 4(1): 197, 2021 02 12.
Article in English | MEDLINE | ID: mdl-33580154

ABSTRACT

In light of the recent accumulated knowledge on SARS-CoV-2 and its mode of human cells invasion, the binding of viral spike glycoprotein to human Angiotensin Converting Enzyme 2 (hACE2) receptor plays a central role in cell entry. We designed a series of peptides mimicking the N-terminal helix of hACE2 protein which contains most of the contacting residues at the binding site, exhibiting a high helical folding propensity in aqueous solution. Our best peptide-mimics are able to block SARS-CoV-2 human pulmonary cell infection with an inhibitory concentration (IC50) in the nanomolar range upon binding to the virus spike protein with high affinity. These first-in-class blocking peptide mimics represent powerful tools that might be used in prophylactic and therapeutic approaches to fight the coronavirus disease 2019 (COVID-19).


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , COVID-19/virology , Peptides/pharmacology , SARS-CoV-2/physiology , Amino Acid Sequence , Cell Line , Circular Dichroism , Humans , Peptides/chemical synthesis , Peptides/chemistry , Peptides/metabolism , Protein Binding/drug effects , Protein Structure, Secondary , Spike Glycoprotein, Coronavirus/metabolism , Virus Replication/drug effects
13.
Microb Cell Fact ; 19(1): 178, 2020 Sep 07.
Article in English | MEDLINE | ID: mdl-32894164

ABSTRACT

BACKGROUND: Cyclodipeptide oxidases (CDOs) are enzymes involved in the biosynthesis of 2,5-diketopiperazines, a class of naturally occurring compounds with a large range of pharmaceutical activities. CDOs belong to cyclodipeptide synthase (CDPS)-dependent pathways, in which they play an early role in the chemical diversification of cyclodipeptides by introducing Cα-Cß dehydrogenations. Although the activities of more than 100 CDPSs have been determined, the activities of only a few CDOs have been characterized. Furthermore, the assessment of the CDO activities on chemically-synthesized cyclodipeptides has shown these enzymes to be relatively promiscuous, making them interesting tools for cyclodipeptide chemical diversification. The purpose of this study is to provide the first completely microbial toolkit for the efficient bioproduction of a variety of dehydrogenated 2,5-diketopiperazines. RESULTS: We mined genomes for CDOs encoded in biosynthetic gene clusters of CDPS-dependent pathways and selected several for characterization. We co-expressed each with their associated CDPS in the pathway using Escherichia coli as a chassis and showed that the cyclodipeptides and the dehydrogenated derivatives were produced in the culture supernatants. We determined the biological activities of the six novel CDOs by solving the chemical structures of the biologically produced dehydrogenated cyclodipeptides. Then, we assessed the six novel CDOs plus two previously characterized CDOs in combinatorial engineering experiments in E. coli. We co-expressed each of the eight CDOs with each of 18 CDPSs selected for the diversity of cyclodipeptides they synthesize. We detected more than 50 dehydrogenated cyclodipeptides and determined the best CDPS/CDO combinations to optimize the production of 23. CONCLUSIONS: Our study establishes the usefulness of CDPS and CDO for the bioproduction of dehydrogenated cyclodipeptides. It constitutes the first step toward the bioproduction of more complex and diverse 2,5-diketopiperazines.


Subject(s)
Biotechnology/methods , Diketopiperazines/metabolism , Escherichia coli/enzymology , Oxidoreductases/metabolism , Peptide Synthases/metabolism , Biosynthetic Pathways/genetics , Diketopiperazines/chemistry , Escherichia coli/genetics , Oxidoreductases/genetics , Peptide Synthases/genetics , Phylogeny
14.
J Pept Sci ; 26(11): e3281, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32790009

ABSTRACT

Peptides mimicking antigenic epitopes targeted by antibodies can be powerful tools to be used as antigen surrogates for the specific diagnosis and treatment of autoimmune diseases. Obtaining structural insights about the nature of peptide-antibody interaction in complex mixtures such as sera is a critical goal. In multiple sclerosis (MS), we previously demonstrated that the N-linked ß-d-glucopyranosyl moieties (N-Glc) containing epitopes in nontypeable Haemophilus influenzae adhesin C-terminal portion HMW1(1205-1526) were essential for high-affinity antibody binding in a subpopulation of MS patients. With the aim of developing peptide probes and assessing their binding properties to antibodies from sera of representative patients, we performed the systematic analysis of synthetic peptides based on HMW1(1347-1354) fragment bearing one or two N-Glc respectively on Asn-1349 and/or Asn-1352. The N-glucosylated nonapeptides efficiently bind to IgG antibodies, displaying IC50 in the range 10-8 -10-10 M by competitive indirect enzyme-linked immunosorbent assay (ELISA) in three representative MS patient sera. We selected the di-N-glucosylated adhesin peptide Ac-KAN (Glc)VTLN (Glc)TT-NH2 as the shortest sequence able to inhibit high-avidity interaction with N-Glc targeting IgM antibodies. Nuclear magnetic resonance (NMR)- and circular dichroism (CD)-based characterization showed that the binding properties of these antigens could not be ascribed to structural differences induced by the presence of up to two N-glucosyl moieties. Therefore, the antibody binding is not easily correlated to the position of the sugar or to a determined conformation in water.


Subject(s)
Adhesins, Bacterial/immunology , Antigens/immunology , Multiple Sclerosis/immunology , Peptides/immunology , Adhesins, Bacterial/chemistry , Glycosylation , Haemophilus influenzae/chemistry , Humans , Models, Molecular , Peptides/chemical synthesis , Peptides/chemistry
15.
Sci Rep ; 10(1): 9069, 2020 06 03.
Article in English | MEDLINE | ID: mdl-32494000

ABSTRACT

During inflammatory response, blood leukocytes adhere to the endothelium. This process involves numerous adhesion molecules, including a transmembrane chemokine, CX3CL1, which behaves as a molecular cluster. How this cluster assembles and whether this association has a functional role remain unknown. The analysis of CX3CL1 clusters using native electrophoresis and single molecule fluorescence kinetics shows that CX3CL1 is a homo-oligomer of 3 to 7 monomers. Fluorescence recovery after photobleaching assays reveal that the CX3CL1-transmembrane domain peptide self-associates in both cellular and acellular lipid environments, while its random counterpart (i.e. peptide with the same residues in a different order) does not. This strongly indicates that CX3CL1 oligomerization is driven by its intrinsic properties. According to the molecular modeling, CX3CL1 does not associate in compact bundles but rather with monomers linearly assembled side by side. Finally, the CX3CL1 transmembrane peptide inhibits both the CX3CL1 oligomerization and the adhesive function, while its random counterpart does not. This demonstrates that CX3CL1 oligomerization is mandatory for its adhesive potency. Our results provide a new direction to control CX3CL1-dependent cellular adherence in key immune processes.


Subject(s)
Cell Adhesion/physiology , Chemokine CX3CL1/metabolism , Animals , CHO Cells , COS Cells , Cell Line , Chlorocebus aethiops , Cricetulus , HEK293 Cells , Humans , Membrane Proteins/metabolism
16.
Org Biomol Chem ; 18(18): 3452-3458, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32091060

ABSTRACT

A major current issue in medicinal chemistry is the design of small peptide analogues resistant to proteolysis and able to adopt preferential conformations, while preserving the selectivity and efficiency of natural peptides. Whereas the introduction of one aza-Gly in peptides has proven numerous biological and structural interest, the conformational effect of sequential aza-Gly or aza-amino acids bearing side chains has not been investigated. In this work, experimental NMR and X-ray data together with in silico conformational studies reveal that the introduction of two consecutive aza-amino acids in pseudotripeptides induces the formation of stable hydrogen-bonded ß-turn structures. Notably, this stabilization effect relies on the presence of side chains on aza-amino acids, as more flexible conformations are observed with aza-Gly residues. Remarkably, a longer aza/aza/α/aza/aza/α pseudohexapeptide containing substituted aza-amino acids adopts repeated ß-turns conformations which interconvert with a fully helical structure mimicking a 310 helix.


Subject(s)
Amino Acids/chemistry , Aza Compounds/chemistry , Peptides/chemistry , Protein Conformation
17.
iScience ; 23(3): 100889, 2020 Mar 27.
Article in English | MEDLINE | ID: mdl-32087576

ABSTRACT

Conserved translocator proteins (TSPOs) mediate cell stress responses possibly in a cell-type-specific manner. This work reports on the molecular function of plant TSPO and their possible evolutionary divergence. Arabidopsis thaliana TSPO (AtTSPO) is stress induced and has a conserved polybasic, plant-specific N-terminal extension. AtTSPO reduces water loss by depleting aquaporin PIP2;7 in the plasma membrane. Herein, AtTSPO was found to bind phosphoinositides in vitro, but only full-length AtTSPO or chimeric mouse TSPO with an AtTSPO N-terminus bound PI(4,5)P2in vitro and modified PIP2;7 levels in vivo. Expression of AtTSPO but not its N-terminally truncated variant enhanced phospholipase C activity and depleted PI(4,5)P2 from the plasma membrane and its enrichment in Golgi membranes. Deletion or point mutations within the AtTSPO N-terminus affected PI(4,5)P2 binding and almost prevented AtTSPO-PIP2;7 interaction in vivo. The findings imply functional divergence of plant TSPOs from bacterial and animal counterparts via evolutionary acquisition of the phospholipid-interacting N-terminus.

18.
Sci Rep ; 9(1): 20226, 2019 12 27.
Article in English | MEDLINE | ID: mdl-31882990

ABSTRACT

The 2,5-Diketopiperazines (DKPs) constitute a large family of natural products with important biological activities. Bicyclomycin is a clinically-relevant DKP antibiotic that is the first and only member in a class known to target the bacterial transcription termination factor Rho. It derives from cyclo-(L-isoleucyl-L-leucyl) and has an unusual and highly oxidized bicyclic structure that is formed by an ether bridge between the hydroxylated terminal carbon atom of the isoleucine lateral chain and the alpha carbon of the leucine in the diketopiperazine ring. Here, we paired in vivo and in vitro studies to complete the characterization of the bicyclomycin biosynthetic gene cluster. The construction of in-frame deletion mutants in the biosynthetic gene cluster allowed for the accumulation and identification of biosynthetic intermediates. The identity of the intermediates, which were reproduced in vitro using purified enzymes, allowed us to characterize the pathway and corroborate previous reports. Finally, we show that the putative antibiotic transporter was dispensable for the producing strain.


Subject(s)
Anti-Bacterial Agents/biosynthesis , Biosynthetic Pathways/genetics , Genes, Bacterial/genetics , Multigene Family , Streptomyces/genetics , Anti-Bacterial Agents/chemistry , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Bridged Bicyclo Compounds, Heterocyclic/metabolism , Diketopiperazines/chemistry , Hydroxylation , Models, Chemical , Molecular Structure , Mutation , Streptomyces/metabolism
19.
Sci Rep ; 9(1): 15009, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31611595

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

20.
J Med Chem ; 62(21): 9743-9752, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31603669

ABSTRACT

Matrix metalloproteinase-12 (MMP-12) is highly upregulated in several inflammatory diseases, including abdominal aortic aneurysm (AAA). Here we report four novel 99mTc-labeled radiotracers derived from a highly selective competitive MMP-12 inhibitor. These tracers in their 99gTc version were assessed in vitro on a set of human metalloproteases and displayed high affinity and selectivity toward MMP-12. Their radiolabeling with 99mTc was shown to be efficient and stable in both buffer and mouse blood. The tracers showed major differences in their biodistribution and blood clearance. On the basis of its in vivo performance, [99mTc]-1 was selected for evaluation in murine AAA, where MMP-12 gene expression is upregulated. Autoradiography of aortae at 2 h postinjection revealed high uptake of [99mTc]-1 in AAA relative to adjacent aorta. Tracer uptake specificity was demonstrated through in vivo competition. This study paves the way for further evaluation of [99mTc]-1 for imaging AAA and other MMP-12-associated diseases.


Subject(s)
Aorta/diagnostic imaging , Matrix Metalloproteinase 12/metabolism , Matrix Metalloproteinase Inhibitors/chemistry , Molecular Imaging/methods , Organotechnetium Compounds/chemistry , Animals , Aortic Aneurysm, Abdominal/diagnostic imaging , Humans , Male , Matrix Metalloproteinase Inhibitors/pharmacokinetics , Mice , Mice, Inbred C57BL , Radioactive Tracers , Radiochemistry , Tissue Distribution , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...