Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Type of study
Publication year range
1.
STAR Protoc ; 5(3): 103292, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39264804

ABSTRACT

RNA-binding proteins (RBPs) are involved in many biological processes. The direct interaction between protein and RNA can be studied using cross-linking immunoprecipitation (CLIP) techniques in living cells. Here, we present a protocol to characterize the direct binding of proteins to RNA:DNA hybrids or RNA-DNA chimeras in living cells using CLIP. We describe steps for RNA-protein UV-C cross-linking in living cells, isolating RNA-protein complexes, RNA labeling, and extracting nucleic acid. We then detail procedures for nuclease treatment and nucleic acid migration.

2.
Cell Rep ; 42(11): 113412, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37963016

ABSTRACT

RNA-binding proteins (RBPs) are found at replication forks, but their direct interaction with DNA-embedded RNA species remains unexplored. Here, we report that p53-binding protein 1 (53BP1), involved in the DNA damage and replication stress response, is an RBP that directly interacts with Okazaki fragments in the absence of external stress. The recruitment of 53BP1 to nascent DNA shows susceptibility to in situ ribonuclease A treatment and is dependent on PRIM1, which synthesizes the RNA primer of Okazaki fragments. Conversely, depletion of FEN1, resulting in the accumulation of uncleaved RNA primers, increases 53BP1 levels at replication forks, suggesting that RNA primers contribute to the recruitment of 53BP1 at the lagging DNA strand. 53BP1 depletion induces an accumulation of S-phase poly(ADP-ribose), which constitutes a sensor of unligated Okazaki fragments. Collectively, our data indicate that 53BP1 is anchored at nascent DNA through its RNA-binding activity, highlighting the role of an RNA-protein interaction at replication forks.


Subject(s)
DNA Replication , DNA , DNA Replication/genetics , DNA/metabolism , RNA/genetics , RNA/metabolism
3.
J. physiol. biochem ; 73(3): 335-347, ago. 2017. tab, graf
Article in Spanish | IBECS | ID: ibc-178885

ABSTRACT

The purpose of the present study was to examine the effect of chronic exercise on the hypothalamus and hippocampus levels of the endocannabinoids (eCBs) anandamide (AEA) and 2-arachidonoylglycerol (2-AG) and of two AEA congeners and on the expression of genes coding for CB1, CB2 receptors (Cnr1 and Cnr2, respectively), and the enzymes responsible for eCB biosynthesis and degradation, in rats fed with a standard or high-fat diet. Male Wistar rats (n = 28) were placed on a 12-week high-fat (HFD) or standard diet period, followed by 12 weeks of exercise training for half of each group. Tissue levels of eCBs and related lipids were measured by liquid chromatography mass spectrometry, and expression of genes coding for CB1 and CB2 receptors and eCB metabolic enzymes was measured by quantitative real-time polymerase chain reaction (qPCR). HFD induced a significant increase in 2-AG (p < 0.01) in hypothalamus. High-fat diet paired with exercise training had no effect on AEA, 2-AG, and AEA congener levels in the hypothalamus and hippocampus. Cnr1 expression levels were significantly increased in the hippocampus in response to HFD, exercise, and the combination of both (p < 0.05). Our results indicate that eCB signaling in the CNS is sensitive to diet and/or exercise


Subject(s)
Animals , Male , Diet, High-Fat , Endocannabinoids/metabolism , Hippocampus/metabolism , Hypothalamus/metabolism , Energy Intake , Gene Expression , Rats, Wistar , Receptors, Cannabinoid/genetics , Receptors, Cannabinoid/metabolism , Physical Conditioning, Animal
4.
Cell Cycle ; 15(18): 2405-9, 2016 Sep 16.
Article in English | MEDLINE | ID: mdl-27533468

ABSTRACT

Activating mutations of the NRAS (neuroblastoma rat sarcoma viral oncogene) protein kinase, present in many cancers, induce a constitutive activation of both the RAS-RAF-MEK-ERK mitogen-activated protein kinase (MAPK) signal transduction pathway and the PI(3)K-AKT-mTOR, pathway. This in turn regulates the formation of the eIF4F eukaryotic translation initiation complex, comprising the eIF4E cap-binding protein, the eIF4G scaffolding protein and the eIF4A RNA helicase, which binds to the 7-methylguanylate cap (m(7)G) at the 5' end of messenger RNAs. Small molecules targeting MEK (MEKi: MEK inhibitors) have demonstrated activity in NRAS-mutant cell lines and tumors, but resistance sets in most cases within months of treatment. Using proximity ligation assays, that allows visualization of the binding of eIF4E to the scaffold protein eIF4G, generating the active eIF4F complex, we have found that resistance to MEKi is associated with the persistent formation of the eIF4F complex in MEKi-treated NRAS-mutant cell lines. Furthermore, inhibiting the eIF4A component of the eIF4F complex, with a small molecule of the flavagline/rocaglate family, synergizes with inhibiting MEK to kill NRAS-mutant cancer cell lines.


Subject(s)
Eukaryotic Initiation Factor-4A/metabolism , GTP Phosphohydrolases/genetics , Melanoma/genetics , Melanoma/pathology , Membrane Proteins/genetics , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mutation/genetics , Protein Kinase Inhibitors/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/drug effects , Drug Synergism , Eukaryotic Initiation Factor-4F/metabolism , Humans , Mitogen-Activated Protein Kinase Kinases/metabolism
5.
J. physiol. biochem ; 72(2): 183-199, jun. 2016. tab, graf
Article in English | IBECS | ID: ibc-168265

ABSTRACT

The endocannabinoid system is dysregulated during obesity in tissues involved in the control of food intake and energy metabolism. We examined the effect of chronic exercise on the tissue levels of endocannabinoids (eCBs) and on the expression of genes coding for cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2) (Cnr1 and Cnr2, respectively) in the subcutaneous (SAT) and visceral adipose tissues and in the soleus and extensor digitorim longus (EDL) muscles, in rats fed with standard or high-fat diet. Twenty-eight male Wistar rats were placed on high-fat diet or standard diet (HFD and Ctl groups, respectively) during 12 weeks whereafter half of each group was submitted to an exercise training period of 12 weeks (HFD + training and Ctl + training). Tissue levels of eCBs were measured by LC-MS while expressions of genes coding for CB1 and CB2 receptors were investigated by qPCR. High-fat diet induced an increase in anandamide (AEA) levels in soleus and EDL (p < 0.02). In soleus of the HFD group, these changes were accompanied by elevated Cnr1 messenger RNA (mRNA) levels (p < 0.05). In EDL, exercise training allowed to reduce significantly this diet-induced AEA increase (p < 0.005). 2-Arachidonoylglycerol (2-AG) levels were decreased and increased by high-fat diet in SAT and EDL, respectively (p < 0.04), but not affected by exercise training. Unlike the HFD + training group, 2-AG levels in soleus were also decreased in the HFD group compared to Ctl (p < 0.04). The levels of eCBs and Cnr1 expression are altered in a tissue-specific manner following a high-fat diet, and chronic exercise reverses some of these alterations (AU)


No disponible


Subject(s)
Animals , Male , Obesity/therapy , Motor Activity , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/metabolism , TRPV Cation Channels/metabolism , Gene Expression Regulation , Endocannabinoids/metabolism , Arachidonic Acids/metabolism , Diet, High-Fat/adverse effects , Hyperglycemia , Oleic Acids/metabolism , Muscle, Skeletal/metabolism , Polyunsaturated Alkamides/metabolism , Organ Specificity , Rats, Wistar
6.
J Physiol Biochem ; 72(2): 183-99, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26880264

ABSTRACT

The endocannabinoid system is dysregulated during obesity in tissues involved in the control of food intake and energy metabolism. We examined the effect of chronic exercise on the tissue levels of endocannabinoids (eCBs) and on the expression of genes coding for cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2) (Cnr1 and Cnr2, respectively) in the subcutaneous (SAT) and visceral adipose tissues and in the soleus and extensor digitorim longus (EDL) muscles, in rats fed with standard or high-fat diet. Twenty-eight male Wistar rats were placed on high-fat diet or standard diet (HFD and Ctl groups, respectively) during 12 weeks whereafter half of each group was submitted to an exercise training period of 12 weeks (HFD + training and Ctl + training). Tissue levels of eCBs were measured by LC-MS while expressions of genes coding for CB1 and CB2 receptors were investigated by qPCR. High-fat diet induced an increase in anandamide (AEA) levels in soleus and EDL (p < 0.02). In soleus of the HFD group, these changes were accompanied by elevated Cnr1 messenger RNA (mRNA) levels (p < 0.05). In EDL, exercise training allowed to reduce significantly this diet-induced AEA increase (p < 0.005). 2-Arachidonoylglycerol (2-AG) levels were decreased and increased by high-fat diet in SAT and EDL, respectively (p < 0.04), but not affected by exercise training. Unlike the HFD + training group, 2-AG levels in soleus were also decreased in the HFD group compared to Ctl (p < 0.04). The levels of eCBs and Cnr1 expression are altered in a tissue-specific manner following a high-fat diet, and chronic exercise reverses some of these alterations.


Subject(s)
Endocannabinoids/metabolism , Gene Expression Regulation , Motor Activity , Obesity/therapy , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/metabolism , TRPV Cation Channels/metabolism , Amides , Animals , Arachidonic Acids/metabolism , Body Composition , Diet, High-Fat/adverse effects , Ethanolamines/metabolism , Glycerides/metabolism , Hyperglycemia/etiology , Hyperglycemia/prevention & control , Intra-Abdominal Fat/metabolism , Male , Muscle, Skeletal/metabolism , Obesity/etiology , Obesity/metabolism , Obesity/physiopathology , Oleic Acids/metabolism , Organ Specificity , Palmitic Acids/metabolism , Polyunsaturated Alkamides/metabolism , Rats, Wistar , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB2/agonists , Receptor, Cannabinoid, CB2/genetics , Subcutaneous Fat, Abdominal/metabolism , TRPV Cation Channels/agonists , TRPV Cation Channels/genetics , Weight Gain
7.
J Physiol Biochem ; 73(3): 335-347, 2016 Aug.
Article in English | MEDLINE | ID: mdl-28283967

ABSTRACT

The purpose of the present study was to examine the effect of chronic exercise on the hypothalamus and hippocampus levels of the endocannabinoids (eCBs) anandamide (AEA) and 2-arachidonoylglycerol (2-AG) and of two AEA congeners and on the expression of genes coding for CB1, CB2 receptors (Cnr1 and Cnr2, respectively), and the enzymes responsible for eCB biosynthesis and degradation, in rats fed with a standard or high-fat diet. Male Wistar rats (n = 28) were placed on a 12-week high-fat (HFD) or standard diet period, followed by 12 weeks of exercise training for half of each group. Tissue levels of eCBs and related lipids were measured by liquid chromatography mass spectrometry, and expression of genes coding for CB1 and CB2 receptors and eCB metabolic enzymes was measured by quantitative real-time polymerase chain reaction (qPCR). HFD induced a significant increase in 2-AG (p < 0.01) in hypothalamus. High-fat diet paired with exercise training had no effect on AEA, 2-AG, and AEA congener levels in the hypothalamus and hippocampus. Cnr1 expression levels were significantly increased in the hippocampus in response to HFD, exercise, and the combination of both (p < 0.05). Our results indicate that eCB signaling in the CNS is sensitive to diet and/or exercise.


Subject(s)
Diet, High-Fat , Endocannabinoids/metabolism , Hippocampus/metabolism , Hypothalamus/metabolism , Animals , Energy Intake , Gene Expression , Male , Physical Conditioning, Animal , Rats, Wistar , Receptors, Cannabinoid/genetics , Receptors, Cannabinoid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL