Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
J Infect Dis ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38962817

ABSTRACT

BACKGROUND: Tuberculosis (TB) is amongst the largest infectious causes of death worldwide and there is a need for a time- and resource-effective diagnostic method. In this novel and exploratory study, we show the potential of using buccal swabs to collect human DNA and investigate the DNA methylation (DNAm) signatures as a diagnostic tool for TB. METHODS: Buccal swabs were collected from pulmonary TB patients (n= 7), TB exposed (n= 7), and controls (n= 9) in Sweden. Using Illumina MethylationEPIC array the DNAm status was determined. RESULTS: We identified 5644 significant differentially methylated CpG sites between the patients and controls. Performing the analysis on a validation cohort of samples collected in Kenya and Peru (patients, n=26; exposed, n=9; control, n=10) confirmed the DNAm signature. We identified a TB consensus disease module, significantly enriched in TB-associated genes. Lastly, we used machine learning to identify a panel of seven CpG sites discriminative for TB and developed a TB classifier. In the validation cohort the classifier performed with an AUC of 0.94, sensitivity of 0.92, and specificity of 1. CONCLUSION: In summary, the result from this study shows clinical implications of using DNAm signatures from buccal swabs to explore new diagnostic strategies for TB.

2.
J Infect Dis ; 229(4): 1209-1214, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-37824827

ABSTRACT

Lyme neuroborreliosis (LNB) is a complex neuroinflammatory disorder caused by Borrelia burgdorferi, which is transmitted through tick bites. Epigenetic alterations, specifically DNA methylation (DNAm), could play a role in the host immune response during infection. In this study, we present the first genome-wide analysis of DNAm in peripheral blood mononuclear cells from patients with LNB and those without LNB. Using a network-based approach, we highlighted HLA genes at the core of these DNAm changes, which were found to be enriched in immune-related pathways. These findings shed light on the role of epigenetic modifications in the LNB pathogenesis that should be confirmed and further expanded upon in future studies.


Subject(s)
Borrelia burgdorferi , Lyme Neuroborreliosis , Humans , Lyme Neuroborreliosis/genetics , DNA Methylation , Leukocytes, Mononuclear , Borrelia burgdorferi/genetics
3.
J Intern Med ; 294(5): 563-581, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37766515

ABSTRACT

The long-term effects of COVID-19 on cognitive function have become an area of increasing concern. This paper provides an overview of characteristics, risk factors, possible mechanisms, and management strategies for cognitive dysfunction in post-COVID-19 condition (PCC). Prolonged cognitive dysfunction is one of the most common impairments in PCC, affecting between 17% and 28% of the individuals more than 12 weeks after the infection and persisting in some cases for several years. Cognitive dysfunctions can be manifested as a wide range of symptoms including memory impairment, attention deficit, executive dysfunction, and reduced processing speed. Risk factors for developing PCC, with or without cognitive impairments, include advanced age, preexisting medical conditions, and the severity of acute illness. The underlying mechanisms remain unclear, but proposed contributors include neuroinflammation, hypoxia, vascular damage, and latent virus reactivation not excluding the possibility of direct viral invasion of the central nervous system, illustrating complex viral pathology. As the individual variation of the cognitive impairments is large, a neuropsychological examination and a person-centered multidimensional approach are required. According to the World Health Organization, limited evidence on COVID-19-related cognitive impairments necessitates implementing rehabilitation interventions from established practices of similar conditions. Psychoeducation and compensatory skills training are recommended. Assistive products and environmental modifications adapted to individual needs might be helpful. In specific attention- and working memory dysfunctions, cognitive training-carefully monitored for intensity-might be effective for people who do not suffer from post-exertional malaise. Further research is crucial for evidence-based interventions specific to COVID-19-related cognitive impairments.

4.
J Innate Immun ; 15(1): 751-764, 2023.
Article in English | MEDLINE | ID: mdl-37734337

ABSTRACT

Epigenetic reprogramming of innate immune cells by ß-glucan in a process called trained immunity leads to an enhanced host response to a secondary infection. ß-Glucans are structural components of plants, algae, fungi, and bacteria and thus recognized as non-self by human macrophages. We selected the ß-glucan curdlan from Alcaligenes faecalis, WGP dispersible from Saccharomyces cerevisiae, and ß-glucan-rich culture supernatant of Alternaria and investigated whether they could produce trained immunity effects leading to an increased control of virulent Mycobacterium tuberculosis. We observed a significant M. tuberculosis growth reduction in macrophages trained with curdlan and Alternaria, which also correlated with increased IL-6 and IL-1ß release. WGP dispersible-trained macrophages were stratified into "non-responders" and "responders," according to their ability to control M. tuberculosis, with "responders" producing higher IL-6 levels. The addition of neutrophils to infected macrophage cultures further enhanced macrophage control of virulent M. tuberculosis, but not in a stimuli-dependent manner. Pathway enrichment analysis of DNA methylome data also highlighted hypomethylation of genes in pathways associated with signaling and cellular reorganization and motility, and "responders" to WGP training were enriched in the interferon-gamma signaling pathway. This study adds evidence that certain ß-glucans show promise as immune-training agents.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , beta-Glucans , Humans , Pilot Projects , Interleukin-6/metabolism , Macrophages , beta-Glucans/metabolism , Immunity, Innate , Saccharomyces cerevisiae/metabolism , Tuberculosis/metabolism
5.
J Intern Med ; 294(5): 548-562, 2023 11.
Article in English | MEDLINE | ID: mdl-37183186

ABSTRACT

A significant proportion of COVID-19 patients experience debilitating symptoms for months after the acute infection. According to recent estimates, approximately 1 out of 10 COVID-19 convalescents reports persistent health issues more than 3 months after initial recovery. This 'post-COVID-19 condition' may include a large variety of symptoms from almost all domains and organs, and for some patients it may mean prolonged sick-leave, homestay and strongly limited activities of daily life. In this narrative review, we focus on the symptoms and signs of post-COVID-19 condition in adults - particularly those associated with cardiovascular and respiratory systems, such as postural orthostatic tachycardia syndrome or airway disorders - and explore the evidence for chronic autonomic dysfunction as a potential underlying mechanism. The most plausible hypotheses regarding cellular and molecular mechanisms behind the wide spectrum of observed symptoms - such as lingering viruses, persistent inflammation, impairment in oxygen sensing systems and circulating antibodies directed to blood pressure regulatory components - are discussed. In addition, an overview of currently available pharmacological and non-pharmacological treatment options is presented.


Subject(s)
COVID-19 , Postural Orthostatic Tachycardia Syndrome , Primary Dysautonomias , Adult , Humans , COVID-19/complications , COVID-19/therapy , Primary Dysautonomias/etiology , Primary Dysautonomias/therapy , Antibodies , Blood Pressure
6.
Clin Epigenetics ; 14(1): 172, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36517875

ABSTRACT

Post-acute COVID-19 syndrome (PACS) has been defined as symptoms persisting after clearance of a COVID-19 infection. We have previously demonstrated that alterations in DNA methylation (DNAm) status persist in individuals who recovered from a COVID-19 infection, but it is currently unknown if PACS is associated with epigenetic changes. We compared DNAm patterns in patients with PACS with those in controls and in healthy COVID-19 convalescents and found a unique DNAm signature in PACS patients. This signature unravelled modified pathways that regulate angiotensin II and muscarinic receptor signalling and protein-protein interaction networks that have bearings on vesicle formation and mitochondrial function.


Subject(s)
COVID-19 , Leukocytes, Mononuclear , Humans , Post-Acute COVID-19 Syndrome , DNA Methylation , COVID-19/genetics , Epigenesis, Genetic
7.
Clin Epigenetics ; 14(1): 175, 2022 12 17.
Article in English | MEDLINE | ID: mdl-36527066

ABSTRACT

BACKGROUND: Host innate immune cells have been identified as key players in the early eradication of Mycobacterium tuberculosis and in the maintenance of an anti-mycobacterial immune memory, which we and others have shown are induced through epigenetic reprogramming. Studies on human tuberculosis immunity are dominated by those using peripheral blood as surrogate markers for immunity. We aimed to investigate DNA methylation patterns in immune cells of the lung compartment by obtaining induced sputum from M. tuberculosis- exposed subjects including symptom-free subjects testing positively and negatively for latent tuberculosis as well as patients diagnosed with active tuberculosis. Alveolar macrophages and alveolar T cells were isolated from the collected sputum and DNA methylome analyses performed (Illumina Infinium Human Methylation 450 k). RESULTS: Multidimensional scaling analysis revealed that DNA methylomes of cells from the tuberculosis-exposed subjects and controls appeared as separate clusters. The numerous genes that were differentially methylated between the groups were functionally connected and overlapped with previous findings of trained immunity and tuberculosis. In addition, analysis of the interferon-gamma release assay (IGRA) status of the subjects demonstrated that the IGRA status was reflected in the DNA methylome by a unique signature. CONCLUSIONS: This pilot study suggests that M. tuberculosis induces epigenetic reprogramming in immune cells of the lung compartment, reflected as a specific DNA methylation pattern. The DNA methylation signature emerging from the comparison of IGRA-negative and IGRA-positive subjects revealed a spectrum of signature strength with the TB patients grouping together at one end of the spectrum, both in alveolar macrophages and T cells. DNA methylation-based biosignatures could be considered for further development towards a clinically useful tool for determining tuberculosis infection status and the level of tuberculosis exposure.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , DNA Methylation , Macrophages, Alveolar , Pilot Projects , Tuberculosis/genetics , Interferon-gamma Release Tests/methods , Mycobacterium tuberculosis/genetics
8.
Tuberculosis (Edinb) ; 135: 102222, 2022 07.
Article in English | MEDLINE | ID: mdl-35738191

ABSTRACT

Drug resistance in Mycobacterium tuberculosis is an emerging threat that makes the discovery of new candidate drugs a priority. In particular, drugs with high sterilizing activity within host cells are needed to improve efficacy and reduce treatment duration. We aimed to develope and validate a High Content Screening assay based on Mycobacterium tuberculosis-infected primary human monocyte-derived macrophages as its natural reservoir. Infected primary human monocyte-derived macrophages were exposed to control antibiotics or tested compounds on 384 well plates. Intracellular bacterial growth and macrophage numbers were evaluated using an ImageXpress High Content Screening system and Z'-factor was calculated to assess the reproducibility. The combination of isoniazid and rifampicin as a positive control rendered a Z'-factor above 0.4, demonstrating suitability of the assay for screening and compound profiling purposes. In a validation experiment, isoniazid, rifampicin, moxifloxacin and levofloxacin all effectively inhibited intracellular growth as expected. Finally, a pilot screening campaign including 5700 compounds from diverse libraries resulted in the identification of three compounds with confirmed antimycobacterial activity in the low micromolar range and low host cell toxicity. The assay represents an attractive screening platform for both academic research on host-pathogen mechanisms in tuberculosis and for the identification and characterization of novel antimycobacterial compounds.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Lymph Node , Antitubercular Agents/pharmacology , Humans , Isoniazid/pharmacology , Macrophages/microbiology , Reproducibility of Results , Rifampin/pharmacology
9.
Epigenetics ; 17(13): 1875-1891, 2022 12.
Article in English | MEDLINE | ID: mdl-35758003

ABSTRACT

A majority of SARS-CoV-2 recoverees develop only mild-to-moderate symptoms, while some remain completely asymptomatic. Although viruses, including SARS-CoV-2, may evade host immune responses by epigenetic mechanisms including DNA methylation, little is known about whether these modifications are important in defence against and healthy recovery from COVID-19 in the host. To this end, epigenome-wide DNA methylation patterns from COVID-19 convalescents were compared to uninfected controls from before and after the pandemic. Peripheral blood mononuclear cell (PBMC) DNA was extracted from uninfected controls, COVID-19 convalescents, and symptom-free individuals with SARS-CoV-2-specific T cell-responses, as well as from PBMCs stimulated in vitro with SARS-CoV-2. Subsequently, the Illumina MethylationEPIC 850K array was performed, and statistical/bioinformatic analyses comprised differential DNA methylation, pathway over-representation, and module identification analyses. Differential DNA methylation patterns distinguished COVID-19 convalescents from uninfected controls, with similar results in an experimental SARS-CoV-2 infection model. A SARS-CoV-2-induced module was identified in vivo, comprising 66 genes of which six (TP53, INS, HSPA4, SP1, ESR1, and FAS) were present in corresponding in vitro analyses. Over-representation analyses revealed involvement in Wnt, muscarinic acetylcholine receptor signalling, and gonadotropin-releasing hormone receptor pathways. Furthermore, numerous differentially methylated and network genes from both settings interacted with the SARS-CoV-2 interactome. Altered DNA methylation patterns of COVID-19 convalescents suggest recovery from mild-to-moderate SARS-CoV-2 infection leaves longstanding epigenetic traces. Both in vitro and in vivo exposure caused epigenetic modulation of pathways thataffect odour perception. Future studies should determine whether this reflects host-induced protective antiviral defense or targeted viral hijacking to evade host defence.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/genetics , Leukocytes, Mononuclear , Odorants , DNA Methylation , Epigenesis, Genetic , Perception
10.
Epigenetics ; 17(8): 882-893, 2022 08.
Article in English | MEDLINE | ID: mdl-34482796

ABSTRACT

Flow cytometry is a classical approach used to define cell types in peripheral blood. While DNA methylation signatures have been extensively employed in recent years as an alternative to flow cytometry to define cell populations in peripheral blood, this approach has not been tested in lung-derived samples. Here, we compared bronchoalveolar lavage with a more cost-effective and less invasive technique based on sputum induction and developed a DNA methylome-based algorithm that can be used to deconvolute the cell types in such samples. We analysed the DNA methylome profiles of alveolar macrophages and lymphocytes cells isolated from the pulmonary compartment. The cells were isolated using two different methods, sputum induction and bronchoalveolar lavage. A strong positive correlation between the DNA methylome profiles of cells obtained with the two isolation methods was found. We observed the best correlation of the DNA methylomes when both isolation methods captured cells from the lower parts of the lungs. We also identified unique patterns of CpG methylation in DNA obtained from the two cell populations, which can be used as a signature to discriminate between the alveolar macrophages and lymphocytes by means of open-source algorithms. We validated our findings with external data and obtained results consistent with the previous findings. Our analysis opens up a new possibility to identify different cell populations from lung samples and promotes sputum induction as a tool to study immune cell populations from the lung.


Subject(s)
Epigenome , Sputum , Bronchoalveolar Lavage Fluid , DNA Methylation , Lung
11.
EBioMedicine ; 74: 103746, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34902786

ABSTRACT

BACKGROUND: The century-old Mycobacterium bovis Bacillus Calmette-Guerin (BCG) remains the only licensed vaccine against tuberculosis (TB). Despite this, there is still a lot to learn about the immune response induced by BCG, both in terms of phenotype and specificity. METHODS: We investigated immune responses in adult individuals pre and 8 months post BCG vaccination. We specifically determined changes in gene expression, cell subset composition, DNA methylome, and the TCR repertoire induced in PBMCs and CD4 memory T cells associated with antigen stimulation by either BCG or a Mycobacterium tuberculosis (Mtb)-derived peptide pool. FINDINGS: Following BCG vaccination, we observed increased frequencies of CCR6+ CD4 T cells, which includes both Th1* (CXCR3+CCR6+) and Th17 subsets, and mucosal associated invariant T cells (MAITs). A large number of immune response genes and pathways were upregulated post BCG vaccination with similar patterns observed in both PBMCs and memory CD4 T cells, thus suggesting a substantial role for CD4 T cells in the cellular response to BCG. These upregulated genes and associated pathways were also reflected in the DNA methylome. We described both qualitative and quantitative changes in the BCG-specific TCR repertoire post vaccination, and importantly found evidence for similar TCR repertoires across different subjects. INTERPRETATION: The immune signatures defined herein can be used to track and further characterize immune responses induced by BCG, and can serve as reference for benchmarking novel vaccination strategies.


Subject(s)
BCG Vaccine/administration & dosage , CD4-Positive T-Lymphocytes/metabolism , DNA Methylation , Gene Expression Profiling/methods , Receptors, Antigen, T-Cell/genetics , Receptors, CCR6/metabolism , Adult , BCG Vaccine/immunology , Gene Expression Regulation , Humans , Longitudinal Studies , Male , RNA-Seq , Th1 Cells/metabolism , Th17 Cells/metabolism
12.
Sci Rep ; 11(1): 19418, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34593857

ABSTRACT

Tuberculosis (TB), caused by Mycobacterium tuberculosis, spreads via aerosols and the first encounter with the immune system is with the pulmonary-resident immune cells. The role of epigenetic regulations in the immune cells is emerging and we have previously shown that macrophages capacity to kill M. tuberculosis is reflected in the DNA methylome. The aim of this study was to investigate epigenetic modifications in alveolar macrophages and T cells in a cohort of medical students with an increased risk of TB exposure, longitudinally. DNA methylome analysis revealed that a unique DNA methylation profile was present in healthy subjects who later developed latent TB during the study. The profile was reflected in a different overall DNA methylation distribution as well as a distinct set of differentially methylated genes (DMGs). The DMGs were over-represented in pathways related to metabolic reprogramming of macrophages and T cell migration and IFN-γ production, pathways previously reported important in TB control. In conclusion, we identified a unique DNA methylation signature in individuals, with no peripheral immune response to M. tuberculosis antigen who later developed latent TB. Together the study suggests that the DNA methylation status of pulmonary immune cells can reveal who will develop latent TB infection.


Subject(s)
Latent Tuberculosis/immunology , Mycobacterium tuberculosis/immunology , T-Lymphocytes/immunology , Adult , Cohort Studies , DNA Methylation , Female , Humans , Male , T-Lymphocytes/cytology , Young Adult
13.
BMC Microbiol ; 21(1): 167, 2021 06 05.
Article in English | MEDLINE | ID: mdl-34090328

ABSTRACT

BACKGROUND: Efficient high-throughput drug screening assays are necessary to enable the discovery of new anti-mycobacterial drugs. The purpose of our work was to develop and validate an assay based on live-cell imaging which can monitor the growth of two distinct phenotypes of Mycobacterium tuberculosis and to test their susceptibility to commonly used TB drugs. RESULTS: Both planktonic and cording phenotypes were successfully monitored as fluorescent objects using the live-cell imaging system IncuCyte S3, allowing collection of data describing distinct characteristics of aggregate size and growth. The quantification of changes in total area of aggregates was used to define IC50 and MIC values of selected TB drugs which revealed that the cording phenotype grew more rapidly and displayed a higher susceptibility to rifampicin. In checkerboard approach, testing pair-wise combinations of sub-inhibitory concentrations of drugs, rifampicin, linezolid and pretomanid demonstrated superior growth inhibition of cording phenotype. CONCLUSIONS: Our results emphasize the efficiency of using automated live-cell imaging and its potential in high-throughput whole-cell screening to evaluate existing and search for novel antimycobacterial drugs.


Subject(s)
Antitubercular Agents/pharmacology , High-Throughput Screening Assays/methods , Microbial Sensitivity Tests/methods , Microscopy/methods , Mycobacterium tuberculosis/drug effects , Tuberculosis/microbiology , Automation , Humans , Isoniazid/pharmacology , Linezolid/pharmacology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/growth & development , Phenotype , Rifampin/pharmacology
14.
Tuberculosis (Edinb) ; 124: 101977, 2020 09.
Article in English | MEDLINE | ID: mdl-32829078

ABSTRACT

Our aim was to develop a Mycobacterium tuberculosis (Mtb) growth inhibition assay (MGIA) as a summary estimate of host immune control of virulent Mtb. Mycobacterial growth inhibition (MGI) using previously frozen human PBMCs infected with H37Rv was assessed by live-cell imaging (Incucyte©) complemented by imaging flow cytometry analysis of phagocytosis. MGI measured as relative fluorescence units (RFU) was calibrated to time to positive culture (TTP) in BACTEC 960 MGIT. At a MOI (multiplicity of infection) of 5, there was a wide range of MGI of blood donors (1.1*106-2.7*106 RFU, n = 14). Intra- and inter-assay variability were at most 17.5 and 20.7 CV%. Cell viability at day 5 was 57 and 62% monitored by the LDH and Draq7 assays respectively. There was a strong correlation between a readout for Mtb growth using CFU counts or TTP compared to RFU (r2≥0.96). Our MGIA enabling live-cell imaging and monitoring of cell viability was able to detect a wide range of Mtb growth inhibition by PBMCs and was calibrated to several readout options for bacterial growth. This MGIA may be valuable as a surrogate marker of host immunity in a personalized medicine approach.


Subject(s)
Leukocytes, Mononuclear/microbiology , Microscopy, Fluorescence , Mycobacterium tuberculosis/growth & development , Tuberculosis/diagnosis , Cell Survival , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Host-Pathogen Interactions , Humans , Leukocytes, Mononuclear/pathology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/metabolism , Predictive Value of Tests , Reproducibility of Results , Time Factors , Tuberculosis/immunology , Tuberculosis/microbiology , Virulence
15.
Cytokine ; 133: 155135, 2020 09.
Article in English | MEDLINE | ID: mdl-32534356

ABSTRACT

The anti-tuberculosis vaccine Bacillus Calmette-Guérin (BCG) is able to boost innate immune responses through a process called 'trained immunity'. It is hypothesized that BCG-induced trained immunity contributes to protection against Mycobacterium tuberculosis infection. Since alveolar macrophages are the first cell type to encounter M. tuberculosis upon infection, we aimed to investigate the immunomodulatory effects of BCG vaccination on alveolar macrophages. Searching for a less-invasive method than bronchoalveolar lavage, we optimized the isolation of alveolar macrophages from induced sputum of healthy volunteers. Viable alveolar macrophages could be successfully isolated from induced sputum and showed signs of activation already upon retrieval. Further flow cytometric analyses revealed that at baseline, higher expression levels of activation markers were observed on the alveolar macrophages of smokers compared to non-smokers. In addition, BCG vaccination resulted in decreased expression of the activation markers CD11b and HLA-DR on alveolar macrophages. Future studies should evaluate the functional consequences of this reduced activation of alveolar macrophages after BCG vaccination.


Subject(s)
BCG Vaccine/immunology , Macrophages, Alveolar/immunology , Sputum/immunology , Adolescent , Adult , Healthy Volunteers , Humans , Immunity, Innate/immunology , Immunologic Factors/immunology , Male , Mycobacterium tuberculosis/immunology , Tuberculosis/immunology , Vaccination/methods , Young Adult
16.
J Infect Dis ; 219(12): 1858-1866, 2019 05 24.
Article in English | MEDLINE | ID: mdl-30929010

ABSTRACT

Despite intensive research efforts, several fundamental disease processes for tuberculosis (TB) remain poorly understood. A central enigma is that host immunity is necessary to control disease yet promotes transmission by causing lung immunopathology. Our inability to distinguish these processes makes it challenging to design rational novel interventions. Elucidating basic immune mechanisms likely requires both in vivo and in vitro analyses, since Mycobacterium tuberculosis is a highly specialized human pathogen. The classic immune response is the TB granuloma organized in three dimensions within extracellular matrix. Several groups are developing cell culture granuloma models. In January 2018, NIAID convened a workshop, entitled "3-D Human in vitro TB Granuloma Model" to advance the field. Here, we summarize the arguments for developing advanced TB cell culture models and critically review those currently available. We discuss how integrating complementary approaches, specifically organoids and mathematical modeling, can maximize progress, and conclude by discussing future challenges and opportunities.


Subject(s)
Granuloma/immunology , Tuberculosis/immunology , Animals , Granuloma/microbiology , Humans , Models, Theoretical , Mycobacterium tuberculosis/immunology , Organoids/immunology , Organoids/microbiology , Tuberculosis/microbiology
17.
Epigenetics ; 14(6): 589-601, 2019 06.
Article in English | MEDLINE | ID: mdl-31010371

ABSTRACT

The protection against tuberculosis induced by the Bacille Calmette Guérin (BCG) vaccine is unpredictable. In our previous study, altered DNA methylation pattern in peripheral blood mononuclear cells (PBMCs) in response to BCG was observed in a subgroup of individuals, whose macrophages killed mycobacteria effectively ('responders'). These macrophages also showed production of Interleukin-1ß (IL-1ß) in response to mycobacterial stimuli before vaccination. Here, we hypothesized that the propensity to respond to the BCG vaccine is reflected in the DNA methylome. We mapped the differentially methylated genes (DMGs) in PBMCs isolated from responders/non-responders at the time point before vaccination aiming to identify possible predictors of BCG responsiveness. We identified 43 DMGs and subsequent bioinformatic analyses showed that these were enriched for actin-modulating pathways, predicting differences in phagocytosis. This could be validated by experiments showing that phagocytosis of mycobacteria, which is an event preceding mycobacteria-induced IL-1ß production, was strongly correlated with the DMG pattern.


Subject(s)
BCG Vaccine/administration & dosage , DNA Methylation , Leukocytes, Mononuclear/metabolism , Macrophages/metabolism , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/immunology , Tuberculosis/immunology , Base Sequence , Gene Expression Profiling , Healthy Volunteers , Humans , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/microbiology , Macrophages/immunology , Macrophages/microbiology , Sequence Homology , Tuberculosis/microbiology , Tuberculosis/prevention & control , Vaccination
18.
Sci Rep ; 9(1): 3126, 2019 02 28.
Article in English | MEDLINE | ID: mdl-30816317

ABSTRACT

Innate immunity is a first line defense against Mycobacterium tuberculosis infection where inflammasome activation and secretion of the pro-inflammatory cytokine IL-1beta, plays a major role. Thus, genetic polymorphisms in innate immunity-related genes such as CARD8 and NLRP3 may contribute to the understanding of why most exposed individuals do not develop infection. Our aim was to investigate the association between polymorphisms in CARD8 and NLRP3 and active tuberculosis (TB) as well as their relationship to treatment outcome in a high-endemic setting for TB. Polymorphisms in CARD8 (C10X) and NLRP3 (Q705K) were analysed in 1190 TB patients and 1990 healthy donors (HD). There was a significant association between homozygotes in the CARD8 polymorphism and extrapulmonary TB (EPTB), which was not the case for pulmonary TB or HDs. Among TB-patients, there was an association between poor treatment outcome and the NLRP3 (Q705K) polymorphism. Our study shows that inflammasome polymorphisms are associated with EPTB and poor clinical outcome in active TB in Ethiopia. The practical implications and determining causal relationships on a mechanistic level needs further study.


Subject(s)
CARD Signaling Adaptor Proteins/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Neoplasm Proteins/genetics , Tuberculosis/genetics , Adult , Ethiopia/epidemiology , Female , Gene Frequency , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Prognosis , Treatment Outcome , Tuberculosis/diagnosis , Tuberculosis/epidemiology , Tuberculosis/therapy , Young Adult
19.
PLoS One ; 14(2): e0212858, 2019.
Article in English | MEDLINE | ID: mdl-30807612

ABSTRACT

BACKGROUND: Intracellular delivery of antimicrobial agents by nanoparticles, such as mesoporous silica particles (MSPs), offers an interesting strategy to treat intracellular infections. In tuberculosis (TB), Mycobacterium tuberculosis avoids components of the immune system by residing primarily inside alveolar macrophages, which are the desired target for TB therapy. METHODS AND FINDINGS: We have previously identified a peptide, called NZX, capable of inhibiting both clinical and multi-drug resistant strains of M. tuberculosis at therapeutic concentrations. In this study we analysed the potential of MSPs containing NZX for the treatment of tuberculosis. The MSPs released functional NZX gradually into simulated lung fluid and the peptide filled MSPs were easily taken up by primary macrophages. In an intracellular infection model, the peptide containing particles showed increased mycobacterial killing compared to free peptide. The therapeutic potential of peptide containing MSPs was investigated in a murine infection model, showing that MSPs preserved the effect to eliminate M. tuberculosis in vivo. CONCLUSIONS: In this study we found that loading the antimicrobial peptide NZX into MSPs increased the inhibition of intracellular mycobacteria in primary macrophages and preserved the ability to eliminate M. tuberculosis in vivo in a murine model. Our studies provide evidence for the feasibility of using MSPs for treatment of tuberculosis.


Subject(s)
Anti-Bacterial Agents , Antimicrobial Cationic Peptides , Mycobacterium tuberculosis/growth & development , Nanoparticles , Silicon Dioxide , Tuberculosis, Pulmonary/drug therapy , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacokinetics , Antimicrobial Cationic Peptides/pharmacology , Disease Models, Animal , Female , Humans , Mice , Mice, Inbred BALB C , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Porosity , Silicon Dioxide/chemistry , Silicon Dioxide/pharmacokinetics , Silicon Dioxide/pharmacology , Tuberculosis, Pulmonary/metabolism , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/pathology
20.
Biochem Biophys Res Commun ; 511(1): 117-121, 2019 03 26.
Article in English | MEDLINE | ID: mdl-30773257

ABSTRACT

The effect of corticosteroids on human physiology is complex and their use in tuberculosis patients remains controversial. In a high-throughput screening approach designed to discover virulence inhibitors, several corticosteroids were found to prevent cytolysis of fibroblasts infected with mycobacteria. Further experiments with Mycobacterium tuberculosis showed anti-cytolytic activity in the 10 nM range, but no effect on bacterial growth or survival in the absence of host cells at 20 µM. The results from a panel of corticosteroids with various affinities to the glucocorticoid- and mineralocorticoid receptors indicate that the inhibition of cytolysis most likely is mediated through the glucocorticoid receptor. Using live-imaging of M. tuberculosis-infected human monocyte-derived macrophages, we also show that corticosteroids to some extent control intracellular bacteria. In vitro systems with reduced complexity are to further study and understand the interactions between bacterial infection, immune defense and cell signaling.


Subject(s)
Adrenal Cortex Hormones/pharmacology , Fibroblasts/drug effects , Macrophages/drug effects , Protective Agents/pharmacology , Tuberculosis/drug therapy , Antitubercular Agents/pharmacology , Cell Line , Cell Survival/drug effects , Cells, Cultured , Fibroblasts/cytology , Fibroblasts/metabolism , Fibroblasts/microbiology , Humans , Macrophages/cytology , Macrophages/metabolism , Macrophages/microbiology , Mycobacterium tuberculosis/drug effects , Receptors, Glucocorticoid/metabolism , Tuberculosis/metabolism , Tuberculosis/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL