Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
Chem ; 10(2): 713-729, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38738169

ABSTRACT

Optoacoustic imaging has grown in clinical relevance due to inherent advantages in sensitivity, resolution, and imaging depth, but the development of contrast agents is lacking. This study assesses the influence of structural features of squaraine dyes on optoacoustic activity through computational models, in vitro testing, and in vivo experimentation. The squaraine scaffold was decorated with halogens and side-chain extensions. Extension of side chains and heavy halogenation of squaraines both increased optoacoustic signals individually, although they had a more significant effect in tandem. Density functional theory models suggest that the origin of the increased optoacoustic signal is the increase in transition dipole moment and vibrational entropy, which manifested as increased absorbance in near-infrared region (NIR) wavelengths and decreased fluorescence quantum yield. This study provides insight into the structure-function relationships that will lead guiding principles for optimizing optoacoustic contrast agents. Further developments of squaraines and other agents will further increase the relevance of optoacoustic imaging in a clinical setting.

3.
Pediatr Ann ; 52(11): e418-e421, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37935400

ABSTRACT

Trauma exposure and other adverse life events are common experiences among youth and present long-standing mental and physical health consequences. Given the ongoing lack of sufficient mental health services, pediatricians play a critical role in supporting trauma-exposed youth. We propose both universal precaution and trauma-specific strategies for pediatric primary care settings. Universal interventions include recommendations to make health care systems more trauma-informed, reduce trauma or re-traumatization in the medical setting, eliminate potential bias, and focus on a strengths-based approach to support diverse youth and families. Trauma-specific strategies include screening for trauma-related symptomatology and risk stratification to link youth to appropriate levels of care. Specific assessment tools, resources, and materials are provided. [Pediatr Ann. 2023;52(11):e418-e421.].


Subject(s)
Mental Health Services , Adolescent , Child , Humans , Primary Health Care
4.
Clin Cancer Res ; 29(11): 2158-2169, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36951682

ABSTRACT

PURPOSE: G-CSF enhances colon cancer development. This study defines the prevalence and effects of increased G-CSF signaling in human colon cancers and investigates G-CSF inhibition as an immunotherapeutic strategy against metastatic colon cancer. EXPERIMENTAL DESIGN: Patient samples were used to evaluate G-CSF and G-CSF receptor (G-CSFR) levels by IHC with sera used to measure G-CSF levels. Peripheral blood mononuclear cells were used to assess the rate of G-CSFR+ T cells and IFNγ responses to chronic ex vivo G-CSF. An immunocompetent mouse model of peritoneal metastasis (MC38 cells in C57Bl/6J) was used to determine the effects of G-CSF inhibition (αG-CSF) on survival and the tumor microenvironment (TME) with flow and mass cytometry. RESULTS: In human colon cancer samples, the levels of G-CSF and G-CSFR are higher compared to normal colon tissues from the same patient. High patient serum G-CSF is associated with increases in markers of poor prognosis, (e.g., VEGF, IL6). Circulating T cells from patients express G-CSFR at double the rate of T cells from controls. Prolonged G-CSF exposure decreases T cell IFNγ production. Treatment with αG-CSF shifts both the adaptive and innate compartments of the TME and increases survival (HR, 0.46; P = 0.0237) and tumor T-cell infiltration, activity, and IFNγ response with greater effects in female mice. There is a negative correlation between serum G-CSF levels and tumor-infiltrating T cells in patient samples from women. CONCLUSIONS: These findings support G-CSF as an immunotherapeutic target against colon cancer with greater potential benefit in women.


Subject(s)
Colonic Neoplasms , Granulocyte Colony-Stimulating Factor , Humans , Female , Mice , Animals , Leukocytes, Mononuclear , T-Lymphocytes , Receptors, Granulocyte Colony-Stimulating Factor/physiology , Colonic Neoplasms/drug therapy , Immunotherapy , Tumor Microenvironment
5.
ACS Nano ; 17(4): 3847-3864, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36779870

ABSTRACT

Postoperative abdominal adhesions are a common problem after surgery and can produce serious complications. Current antiadhesive strategies focus mostly on physical barriers and are unsatisfactory and inefficient. In this study, we designed and synthesized advanced injectable cream-like hydrogels with multiple functionalities, including rapid gelation, self-healing, antioxidation, anti-inflammation, and anti-cell adhesion. The multifunctional hydrogels were facilely formed by the conjugation reaction of epigallocatechin-3-gallate (EGCG) and hyaluronic acid (HA)-based microgels and poly(vinyl alcohol) (PVA) based on the dynamic boronic ester bond. The physicochemical properties of the hydrogels including antioxidative and anti-inflammatory activities were systematically characterized. A mouse cecum-abdominal wall adhesion model was implemented to investigate the efficacy of our microgel-based hydrogels in preventing postoperative abdominal adhesions. The hydrogels, with a high molecular weight HA, significantly decreased the inflammation, oxidative stress, and fibrosis and reduced the abdominal adhesion formation, compared to the commercial Seprafilm group or Injury-only group. Label-free quantitative proteomics analysis demonstrated that S100A8 and S100A9 expressions were associated with adhesion formation; the microgel-containing hydrogels inhibited these expressions. The microgel-containing hydrogels with multifunctionality decreased the formation of postoperative intra-abdominal adhesions in a murine model, demonstrating promise for clinical applications.


Subject(s)
Abdominal Wall , Microgels , Mice , Animals , Hydrogels/chemistry , Abdominal Wall/pathology , Abdominal Wall/surgery , Tissue Adhesions/prevention & control , Tissue Adhesions/pathology , Inflammation/pathology
6.
Am Heart J Plus ; 132022 Jan.
Article in English | MEDLINE | ID: mdl-35528316

ABSTRACT

Background: Hypertriglyceridemia is as an independent risk factor for cardiovascular disease (CVD). Apolipoprotein C-III (ApoC-III) is known to regulate triglyceride (TG) metabolism. However, the causal association between ApoC-III and CVD development is unclear. The objectives were to examine the impact of ApoC-III concentration on TG and lipoproteins and investigate the role of known rare loss-of-function APOC3 variants for modulating ApoC-III, TG concentrations and CVD risk in different ethnic groups. Methods: Plasma ApoC-III levels were measured in a multiethnic sample of 518 individuals comprising 271 Asian Indians (Sikhs), 87 Caucasians, 80 African Americans, and 80 Hispanics. Results: ApoC-III levels showed a robust association with TG in Asian Indians (r = 0.5, p = 1.1 × 10-23), Caucasians (r = 0.4, p = 7.2 × 10-4), and Hispanics (r = 0.9, p = 2.7x × 10-28). African Americans had lowest ApoC-III and TG concentrations and highest (44%) prevalence of coronary artery disease (CAD). ApoC-III levels correlated with fasting blood glucose (r = 0.25, p = 6.1 × 10-5) in Asian Indians and central adiposity in Hispanics (waist: r = 0.22, p = 0.05; waist-hip ratio: r = 0.24, p = 0.04). The carriers of rare variants IVS1-2G-A (rs373975305); A43T (rs147210663) and IVS3 + 1G-T (rs140621530) showed high TG but not low ApoC-III levels in Asian Indians and Caucasians. Conclusion: These results highlight the challenges of generalizing antisense ApoC-III inhibition for treating atherosclerotic disease in dyslipidemia that may benefit only specific sub-populations. The observed ethnic differences in ApoC-III concentrations and CAD risk factors, emphasize in-depth genetic and metabolomics evaluations on diverse ancestries.

7.
Cells ; 11(9)2022 04 28.
Article in English | MEDLINE | ID: mdl-35563787

ABSTRACT

One of the major obstacles in treating brain cancers, particularly glioblastoma multiforme, is the occurrence of secondary tumor lesions that arise in areas of the brain and are inoperable while obtaining resistance to current therapeutic agents. Thus, gaining a better understanding of the cellular factors that regulate glioblastoma multiforme cellular movement is imperative. In our study, we demonstrate that the 5'-3' exoribonuclease XRN2 is important to the invasive nature of glioblastoma. A loss of XRN2 decreases cellular speed, displacement, and movement through a matrix of established glioblastoma multiforme cell lines. Additionally, a loss of XRN2 abolishes tumor formation in orthotopic mouse xenograft implanted with G55 glioblastoma multiforme cells. One reason for these observations is that loss of XRN2 disrupts the expression profile of several cellular factors that are important for tumor invasion in glioblastoma multiforme cells. Importantly, XRN2 mRNA and protein levels are elevated in glioblastoma multiforme patient samples. Elevation in XRN2 mRNA also correlates with poor overall patient survival. These data demonstrate that XRN2 is an important cellular factor regulating one of the major obstacles in treating glioblastomas and is a potential molecular target that can greatly enhance patient survival.


Subject(s)
Brain Neoplasms , Exoribonucleases , Glioblastoma , Animals , Brain Neoplasms/metabolism , Cell Movement/genetics , Cell Proliferation , Exoribonucleases/metabolism , Glioblastoma/metabolism , Humans , Mice , Neoplastic Processes , RNA, Messenger/therapeutic use
8.
J Cell Mol Med ; 26(2): 570-582, 2022 01.
Article in English | MEDLINE | ID: mdl-34910361

ABSTRACT

Glioblastoma (GBM) is the most common primary malignant brain tumour in adults. Despite a multimodal treatment response, survival for GBM patients remains between 12 and 15 months. Anti-ELTD1 antibody therapy is effective in decreasing tumour volumes and increasing animal survival in an orthotopic GBM xenograft. OKN-007 is a promising chemotherapeutic agent that is effective in various GBM animal models and is currently in two clinical trials. In this study, we sought to compare anti-ELTD1 and OKN-007 therapies, as single agents and combined, against bevacizumab, a commonly used therapeutic agent against GBM, in a human G55 xenograft mouse model. MRI was used to monitor tumour growth, and immunohistochemistry (IHC) was used to assess tumour markers for angiogenesis, cell migration and proliferation in the various treatment groups. OKN and anti-ELTD1 treatments significantly increased animal survival, reduced tumour volumes and normalized the vasculature. Additionally, anti-ELTD1 was also shown to significantly affect other pro-angiogenic factors such as Notch1 and VEGFR2. Unlike bevacizumab, anti-ELTD1 and OKN treatments did not induce a pro-migratory phenotype within the tumours. Anti-ELTD1 treatment was shown to be as effective as OKN therapy. Both OKN and anti-ELTD1 therapies show promise as potential single-agent multi-focal therapies for GBM patients.


Subject(s)
Brain Neoplasms , Glioblastoma , Animals , Antibodies, Monoclonal/therapeutic use , Benzenesulfonates/pharmacology , Benzenesulfonates/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Cell Line, Tumor , Glioblastoma/drug therapy , Glioblastoma/pathology , Humans , Imines , Mice , Nitrogen Oxides , Receptors, G-Protein-Coupled
9.
Am J Nucl Med Mol Imaging ; 11(5): 363-373, 2021.
Article in English | MEDLINE | ID: mdl-34754607

ABSTRACT

The blood-brain barrier (BBB) is usually impermeable to several drugs, which hampers treatment of various brain-related diseases/disorders. There have been several approaches to open the BBB, including intracarotid infusion of hyperosmotic concentrations of arabinose, mannitol, oleic or linoleic acids, or alkylglycerols, intravenous infusion of bradykinin B2, administration of a fragment of the ZO toxin from vibrio cholera, targeting specific components of the tight junctions (e.g. claudin-5) with siRNA or novel peptidomimetic drugs, or the use of ultrasound with microbubbles. We propose the use of a low molecular weight (MW), nitrone-type compound, OKN-007, which can temporarily open up the BBB for 1-2 hours. Gadolinium (Gd)-based compounds assessed ranged in MW from 546 (Gd-DTPA) to 465 kDa (ß-galactosidase-Gd-DOTA). We also included an albumin-based CA (albumin-Gd-DTPA-biotin) for assessment, as well as an antibody (Ab) against a neuron-specific biomarker conjugated to Gd-DOTA (anti-EphB2-Gd-DOTA). For the anti-EphB2 (goat Ab)-Gd-DOTA assessment, we utilized an anti-goat Ab conjugated with horse radish peroxidase (HRP) for confirmation of the presence of the anti-EphB2-Gd-DOTA probe. In addition, a Cy5 labeled anti-EphB2 Ab was co-administered with the anti-EphB2-Gd-DOTA probe, and assessed ex vivo. This study demonstrates that OKN-007 may be able to temporarily open up the BBB to augment the delivery of various compounds ranging in MW from as small as ~550 to as large as ~470 kDa. This compound is an investigational new drug for glioblastoma (GBM) therapy in clinical trials. The translational capability for human use to augment the delivery of non-BBB-permeable drugs is extremely high.

10.
Neurooncol Adv ; 3(1): vdab132, 2021.
Article in English | MEDLINE | ID: mdl-34704036

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is the most aggressive malignant primary brain tumor in adults. These high-grade gliomas undergo unregulated vascular angiogenesis, migration and cell proliferation allowing the tumor cells to evade cell-cycle checkpoints and apoptotic pathways. The Epidermal growth factor, latrophilin, and seven transmembrane domain-containing 1 on chromosome 1 (ELTD1) is an angiogenic biomarker that is highly expressed in malignant gliomas. Novel treatments targeting ELTD1 with monovalent monoclonal (mmAb) and single chain variable fragment (scFv) antibodies were effective in increasing animal survival, decreasing tumor volume and normalizing the vasculature. Due to the success of our antibody treatments on angiogenesis, this study sought to determine if our anti-ELTD1 treatments affected other aspects of tumorigenesis (cell proliferation, migration, and apoptosis) in a G55 glioma xenograft preclinical mouse model. METHODS: Tumor tissue from untreated, mmAb and scFv anti-ELTD1 treated animals was used to quantify the positivity levels of human mitochondrial antibody, c-MET and Ki-67 for cellular proliferation, migratory markers CD44v6, TRPM8, and BMP2, and cleaved caspase 3 to assess apoptotic activity. RESULTS: This approach demonstrated that our anti-ELTD1 treatments directly affected and decreased the human tumor cells within the tumor region. Additionally, there was a significant decrease in both cellular proliferation and migration due to anti-ETLD1 therapy. Lastly, anti-ELTD1 treatments successfully increased apoptotic activity within the tumor region. CONCLUSION: Our data suggest that anti-ELTD1 therapies would be effective against malignant gliomas by having a multi-focal effect and targeting all four aspects of tumorigenesis.

11.
Lipids Health Dis ; 20(1): 113, 2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34548093

ABSTRACT

BACKGROUND: Hypertriglyceridemia has emerged as a critical coronary artery disease (CAD) risk factor. Rare loss-of-function (LoF) variants in apolipoprotein C-III have been reported to reduce triglycerides (TG) and are cardioprotective in American Indians and Europeans. However, there is a lack of data in other Europeans and non-Europeans. Also, whether genetically increased plasma TG due to ApoC-III is causally associated with increased CAD risk is still unclear and inconsistent. The objectives of this study were to verify the cardioprotective role of earlier reported six LoF variants of APOC3 in South Asians and other multi-ethnic cohorts and to evaluate the causal association of TG raising common variants for increasing CAD risk. METHODS: We performed gene-centric and Mendelian randomization analyses and evaluated the role of genetic variation encompassing APOC3 for affecting circulating TG and the risk for developing CAD. RESULTS: One rare LoF variant (rs138326449) with a 37% reduction in TG was associated with lowered risk for CAD in Europeans (p = 0.007), but we could not confirm this association in Asian Indians (p = 0.641). Our data could not validate the cardioprotective role of other five LoF variants analysed. A common variant rs5128 in the APOC3 was strongly associated with elevated TG levels showing a p-value 2.8 × 10- 424. Measures of plasma ApoC-III in a small subset of Sikhs revealed a 37% increase in ApoC-III concentrations among homozygous mutant carriers than the wild-type carriers of rs5128. A genetically instrumented per 1SD increment of plasma TG level of 15 mg/dL would cause a mild increase (3%) in the risk for CAD (p = 0.042). CONCLUSIONS: Our results highlight the challenges of inclusion of rare variant information in clinical risk assessment and the generalizability of implementation of ApoC-III inhibition for treating atherosclerotic disease. More studies would be needed to confirm whether genetically raised TG and ApoC-III concentrations would increase CAD risk.


Subject(s)
Apolipoprotein C-III/genetics , Coronary Artery Disease/genetics , Genetic Variation , Aged , Alleles , Coronary Artery Disease/ethnology , Europe/epidemiology , Female , Genetic Association Studies , Genotype , Heterozygote , Humans , India/epidemiology , Male , Mendelian Randomization Analysis , Middle Aged , Mutation , Risk , Sequence Analysis, DNA , Triglycerides/blood
12.
Brain Sci ; 11(5)2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33946285

ABSTRACT

It is important to develop minimally invasive biomarker platforms to help in the identification and monitoring of patients with Alzheimer's disease (AD). Assisting in the understanding of biochemical mechanisms as well as identifying potential novel biomarkers and therapeutic targets would be an added benefit of such platforms. This study utilizes a simplified and novel serum profiling platform, using mass spectrometry (MS), to help distinguish AD patient groups (mild and moderate) and controls, as well as to aid in understanding of biochemical phenotypes and possible disease development. A comparison of discriminating sera mass peaks between AD patients and control individuals was performed using leave one [serum sample] out cross validation (LOOCV) combined with a novel peak classification valuation (PCV) procedure. LOOCV/PCV was able to distinguish significant sera mass peak differences between a group of mild AD patients and control individuals with a p value of 10-13. This value became non-significant (p = 0.09) when the same sera samples were randomly allocated between the two groups and reanalyzed by LOOCV/PCV. This is indicative of physiological group differences in the original true-pathology binary group comparison. Similarities and differences between AD patients and traumatic brain injury (TBI) patients were also discernable using this novel LOOCV/PCV platform. MS/MS peptide analysis was performed on serum mass peaks comparing mild AD patients with control individuals. Bioinformatics analysis suggested that cell pathways/biochemical phenotypes affected in AD include those involving neuronal cell death, vasculature, neurogenesis, and AD/dementia/amyloidosis. Inflammation, autoimmunity, autophagy, and blood-brain barrier pathways also appear to be relevant to AD. An impaired VWF/ADAMTS13 vasculature axis with connections to F8 (factor VIII) and LRP1 and NOTCH1 was indicated and is proposed to be important in AD development.

13.
Geroscience ; 43(2): 563-578, 2021 04.
Article in English | MEDLINE | ID: mdl-33846885

ABSTRACT

Rapamycin (RAPA) is found to have neuro-protective properties in various neuroinflammatory pathologies, including brain aging. With magnetic resonance imaging (MRI) techniques, we investigated the effect of RAPA in a lipopolysaccharide (LPS)-induced inflammaging model in rat brains. Rats were exposed to saline (control), or LPS alone or LPS combined with RAPA treatment (via food over 6 weeks). Arterial spin labeling (ASL) perfusion imaging was used to measure relative cerebral blood flow (rCBF). MR spectroscopy (MRS) was used to measure brain metabolite levels. Contrast-enhanced MRI (CE-MRI) was used to assess blood-brain barrier (BBB) permeability. Immunohistochemistry (IHC) was used to confirm neuroinflammation. RAPA restored NF-κB and HIF-1α to normal levels. RAPA was able to significantly restore rCBF in the cerebral cortex post-LPS exposure (p < 0.05), but not in the hippocampus. In the hippocampus, RAPA was able to restore total creatine (Cr) acutely, and N-acetyl aspartate (NAA) at 6 weeks, post-LPS. Myo-inositol (Myo-Ins) levels were found to decrease with RAPA treatment acutely post-LPS. RAPA was also able to significantly restore the BBB acutely post-LPS in both the cortex and hippocampus (p < 0.05 for both). RAPA was found to increase the percent change in BOLD signal in the cortex at 3 weeks, and in the hippocampus at 6 weeks post-LPS, compared to LPS alone. RAPA treatment also restored the neuronal and macro-vascular marker, EphB2, back to normal levels. These results indicate that RAPA may play an important therapeutic role in inhibiting neuroinflammation by normalizing brain vascularity, BBB, and some brain metabolites, and has a high translational capability.


Subject(s)
Blood-Brain Barrier , Sirolimus , Animals , Brain , Cerebrovascular Circulation , Magnetic Resonance Imaging , Rats , Sirolimus/pharmacology
14.
Mult Scler Relat Disord ; 49: 102786, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33517175

ABSTRACT

Multiple sclerosis (MS) and glioblastoma (GBM) are two distinct diseases that affect the central nervous system (CNS). However, perturbation in CNS vasculature are hallmarks of both diseases. ELTD1 (epidermal growth factor, latrophilin, and 7 transmembrane domain containing protein 1 on chromosome 1) is associated with vascular development, and has been linked with tumor angiogenesis. In glioblastomas, we detected over-expression of ELTD1, and found that an antibody targeting ELTD1 could increase animal survival and decrease tumor volumes in a xenograft GBM model. RNA-seq analysis of the preclinical data in the model for GBM identified that some of the molecular pathways affected by the anti-ELTD1 antibody therapy are also found to be associated with MS. In this study, we used molecular-targeted (mt) MR imaging and immunohistochemistry to assess ELTD1 levels in experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. Specifically, we found that ELTD1 is readily detected in the brains of mice with EAE and is predominantly found in the corpus callosum. In addition, we found that the blood-brain barrier (BBB) was compromised in the brains of EAE mice using contrast-enhanced MRI (CE-MRI), as well as altered relative cerebral blood flow (rCBF) in the brains and cervical spinal cords of these mice using perfusion imaging, compared to controls. These findings indicate that ELTD1 may be a promising biomarker for CNS-inflammation in MS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Animals , Biomarkers , Blood-Brain Barrier , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/diagnostic imaging , Mice , Mice, Inbred C57BL , Multiple Sclerosis/diagnostic imaging , Spinal Cord
15.
J Transl Med ; 18(1): 424, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33168005

ABSTRACT

BACKGROUND: Diffuse intrinsic pontine glioma (DIPG) is the most common brainstem cancer in childhood. This rapidly progressing brainstem glioma holds a very dismal prognosis with median survival of less than 1 year. Despite extensive research, no significant therapeutic advancements have been made to improve overall survival in DIPG patients. METHODS: Here, we used an orthotopic xenograft pediatric DIPG (HSJD-DIPG-007) mouse model to monitor the effects of anti-cancer agent, OKlahoma Nitrone-007 (OKN-007), as an inhibitor of tumor growth after 28 days of treatment. Using magnetic resonance imaging (MRI), we confirmed the previously described efficacy of LDN-193189, a known activin A receptor, type I (ACVR1) inhibitor, in decreasing tumor burden and found that OKN-007 was equally efficacious. RESULTS: After 28 days of treatment, the tumor volumes were significantly decreased in OKN-007 treated mice (p < 0.01). The apparent diffusion coefficient (ADC), as a measure of tissue structural alterations, was significantly decreased in OKN-007 treated tumor-bearing mice (p < 0.0001). Histological analysis also showed a significant decrease in CD34 expression, essential for angiogenesis, of OKN-007 treated mice (p < 0.05) compared to LDN-193189 treated mice. OKN-007-treated mice also significantly decreased protein expression of the human nuclear antigen (HNA) (p < 0.001), ACVR1 (p < 0.0001), and c-MET (p < 0.05), as well as significantly increased expression of cleaved caspase 3 (p < 0.001) and histone H3 K27-trimethylation (p < 0.01), compared to untreated mouse tumors. CONCLUSIONS: With the dismal prognosis and limited effective chemotherapy available for DIPG, there is significant room for continued research studies, and OKN-007 merits further exploration as a therapeutic agent.


Subject(s)
Brain Stem Neoplasms , Diffuse Intrinsic Pontine Glioma , Glioma , Animals , Brain Stem Neoplasms/drug therapy , Child , Glioma/drug therapy , Humans , Mice , Nitrogen Oxides , Oklahoma
16.
PLoS One ; 15(10): e0239282, 2020.
Article in English | MEDLINE | ID: mdl-33095778

ABSTRACT

OBJECTIVES: To determine if the URO-MCP-1 mouse model for bladder IC/BPS is associated with in vivo bladder hyper-permeability, as measured by contrast-enhanced MRI (CE-MRI), and assess whether molecular-targeted MRI (mt-MRI) can visualize in vivo claudin-2 expression as a result of bladder hyper-permeability. Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic, painful condition of the bladder that affects primarily women. It is known that permeability plays a substantial role in IC/BPS. Claudins are tight junction membrane proteins that are expressed in epithelia and endothelia and form paracellular barriers and pores that determine tight junction permeability. Claudin-2 is a molecular marker that is associated with increased hyperpermeability in the urothelium. MATERIALS AND METHODS: CE-MRI was used to measure bladder hyper-permeability in the URO-MCP-1 mice. A claudin-2-specific mt-MRI probe was used to assess in vivo levels of claudin-2. The mt-MRI probe consists of an antibody against claudin-2 conjugated to albumin that had Gd-DTPA (gadolinium diethylenetriamine pentaacetate) and biotin attached. Verification of the presence of the mt-MRI probe was done by targeting the biotin moiety for the probe with streptavidin-horse radish peroxidase (SA-HRP). Trans-epithelial electrical resistance (TEER) was also used to assess bladder permeability. RESULTS: The URO-MCP-1 mouse model for IC/BPS was found to have a significant increase in bladder permeability, following liposaccharide (LPS) exposure, compared to saline-treated controls. mt-MRI- and histologically-detectable levels of the claudin-2 probe were found to increase with LPS -induced bladder urothelial hyper-permeability in the URO-MCP-1 IC mouse model. Levels of protein expression for claudin-2 were confirmed with immunohistochemistry and immunofluorescence imaging. Claudin-2 was also found to highly co-localize with zonula occlidens-1 (ZO-1), a tight junction protein. CONCLUSION: The combination of CE-MRI and TEER approaches were able to demonstrate hyper-permeability, a known feature associated with some IC/BPS patients, in the LPS-exposed URO-MCP-1 mouse model. This MRI approach could be clinically translated to establish which IC/BPS patients have bladder hyper-permeability and help determine therapeutic options. In addition, the in vivo molecular-targeted imaging approach can provide invaluable information to enhance our understanding associated with bladder urothelium hyper-permeability in IC/BPS patients, and perhaps be used to assist in developing further therapeutic strategies.


Subject(s)
Claudin-2/metabolism , Cystitis, Interstitial/pathology , Magnetic Resonance Imaging/methods , Molecular Probes/chemistry , Urinary Bladder/physiopathology , Animals , Antibodies/chemistry , Antibodies/immunology , Claudin-2/immunology , Cystitis, Interstitial/metabolism , Disease Models, Animal , Gadolinium DTPA/chemistry , Immunohistochemistry , Lipopolysaccharides/toxicity , Mice , Permeability/drug effects , Serum Albumin/chemistry
17.
PLoS One ; 15(8): e0234539, 2020.
Article in English | MEDLINE | ID: mdl-32756554

ABSTRACT

Diabetes Mellitus (DM) accelerates coronary artery disease (CAD) and atherosclerosis, the causes of most heart attacks. The biomolecules involved in these inter-related disease processes are not well understood. This study analyzes biomolecules in the sera of patients with CAD, with and without type (T) 2DM, who are about to undergo coronary artery bypass graft (CABG) surgery. The goal is to develop methodology to help identify and monitor CAD patients with and without T2DM, in order to better understand these phenotypes and to glean relationships through analysis of serum biomolecules. Aorta, fat, muscle, and vein tissues from CAD T2DM patients display diabetic-related histologic changes (e.g., lipid accumulation, fibrosis, loss of cellularity) when compared to non-diabetic CAD patients. The patient discriminatory methodology utilized is serum biomolecule mass profiling. This mass spectrometry (MS) approach is able to distinguish the sera of a group of CAD patients from controls (p value 10-15), with the CAD group containing both T2DM and non-diabetic patients. This result indicates the T2DM phenotype does not interfere appreciably with the CAD determination versus control individuals. Sera from a group of T2DM CAD patients however are distinguishable from non-T2DM CAD patients (p value 10-8), indicating it may be possible to examine the T2DM phenotype within the CAD disease state with this MS methodology. The same serum samples used in the CAD T2DM versus non-T2DM binary group comparison were subjected to MS/MS peptide structure analysis to help identify potential biochemical and phenotypic changes associated with CAD and T2DM. Such peptide/protein identifications could lead to improved understanding of underlying mechanisms, additional biomarkers for discriminating and monitoring these disease conditions, and potential therapeutic targets. Bioinformatics/systems biology analysis of the peptide/protein changes associated with CAD and T2DM suggested cell pathways/systems affected include atherosclerosis, DM, fibrosis, lipogenesis, loss of cellularity (apoptosis), and inflammation.


Subject(s)
Coronary Artery Disease/blood , Coronary Artery Disease/complications , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Diabetic Angiopathies/blood , Adult , Aged , Biomarkers/blood , Blood Proteins/metabolism , Case-Control Studies , Coronary Artery Bypass , Coronary Artery Disease/surgery , Cross-Sectional Studies , Diabetic Angiopathies/surgery , Female , Humans , Male , Middle Aged , Phenotype , Retrospective Studies , Spectrometry, Mass, Electrospray Ionization , Systems Biology , Tandem Mass Spectrometry
18.
Br J Cancer ; 123(4): 624-632, 2020 08.
Article in English | MEDLINE | ID: mdl-32451467

ABSTRACT

BACKGROUND: Women with colorectal cancer (CRC) have a significant survival advantage over men. Sex influences on the tumour microenvironment (TME) are not well characterised, despite the importance of immune response in CRC. We hypothesised that sex-divergent immune responses could contribute to survival. METHODS: Using a murine model of metastatic CRC, we examined T cells, macrophages, and cytokines locally and systemically. TME and serum cytokines were measured by multiplex bead-based arrays, while FCA was used to identify cells and phenotypes. IHC provided spatial confirmation of T cell infiltration. RESULTS: Females had increased survival and T cell infiltration. CD8, CD4 and Th2 populations correlated with longer survival. Males had increased serum levels of chemokines and inflammation-associated cytokines. Within the TME, males had lower cytokine levels than females, and a shallower cytokine gradient to the periphery. Female tumours had elevated IL-10+ macrophages, which correlated with survival. CONCLUSIONS: These data demonstrate survival-associated differences in the immune response of males and females to metastatic CRC. Females showed changes in cytokine production accompanied by increased immune cell populations, biased toward Th2-axis phenotypes. Key differences in the immune response to CRC correlated with survival in this model. These differences support a multi-faceted shift across the TME.


Subject(s)
Colorectal Neoplasms/immunology , Cytokines/blood , Macrophages/metabolism , T-Lymphocytes/metabolism , Adaptive Immunity , Animals , Cell Line, Tumor , Female , Humans , Immunity, Innate , Male , Mice , Neoplasm Metastasis , Neoplasm Transplantation , Phenotype , Sex Characteristics , Survival Analysis , Tumor Microenvironment
19.
JCI Insight ; 5(8)2020 04 23.
Article in English | MEDLINE | ID: mdl-32213715

ABSTRACT

Familial hypocalciuric hypercalcemia (FHH) is a genetic condition associated with hypocalciuria, hypercalcemia, and, in some cases, inappropriately high levels of circulating parathyroid hormone (PTH). FHH is associated with inactivating mutations in the gene encoding the Ca2+-sensing receptor (CaSR), a GPCR, and GNA11 encoding G protein subunit α 11 (Gα11), implicating defective GPCR signaling as the root pathophysiology for FHH. However, the downstream mechanism by which CaSR activation inhibits PTH production/secretion is incompletely understood. Here, we show that mice lacking the transient receptor potential canonical channel 1 (TRPC1) develop chronic hypercalcemia, hypocalciuria, and elevated PTH levels, mimicking human FHH. Ex vivo and in vitro studies revealed that TRPC1 serves a necessary and sufficient mediator to suppress PTH secretion from parathyroid glands (PTGs) downstream of CaSR in response to high extracellular Ca2+ concentration. Gα11 physically interacted with both the N- and C-termini of TRPC1 and enhanced CaSR-induced TRPC1 activity in transfected cells. These data identify TRPC1-mediated Ca2+ signaling as an essential component of the cellular apparatus controlling PTH secretion in the PTG downstream of CaSR.


Subject(s)
Parathyroid Hormone/metabolism , TRPC Cation Channels/metabolism , Animals , Calcium Signaling/physiology , Female , Humans , Hypercalcemia/congenital , Hypercalcemia/metabolism , Male , Mice , Mice, Knockout , Parathyroid Glands/metabolism , Rats
20.
Transl Oncol ; 13(3): 100737, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32208341

ABSTRACT

Glioblastoma (GBM), the most common primary brain tumor found in adults, is extremely aggressive. These high-grade gliomas, which are very diffuse, highly vascular, and invasive, undergo unregulated vascular angiogenesis. Despite available treatments, the median survival for patients is dismal. ELTD1 (EGF, latrophilin, and 7 transmembrane domain containing protein 1) is an angiogenic biomarker highly expressed in human high-grade gliomas. Recent studies have demonstrated that the blood-brain barrier, as well as the blood-tumor barrier, is not equally disrupted in GBM patients. This study therefore aimed to optimize an antibody treatment against ELTD1 using a smaller scFv fragment of a monoclonal antibody that binds against the external region of ELTD1 in a G55 glioma xenograft glioma preclinical model. Morphological magnetic resonance imaging (MRI) was used to determine tumor volumes and quantify perfusion rates. We also assessed percent survival following tumor postdetection. Tumor tissue was also assessed to confirm and quantify the presence of the ELTD1 scFv molecular targeted MRI probe, as well as microvessel density and Notch1 levels. In addition, we used molecular-targeted MRI to localize our antibodies in vivo. This approach showed that our scFv antibody attached-molecular MRI probe was effective in targeting and localizing diffuse tumor regions. Through this analysis, we determined that our anti-ELTD1 scFv antibody treatments were successful in increasing survival, decreasing tumor volumes, and normalizing vascular perfusion and Notch1 levels within tumor regions. This study demonstrates that our scFv fragment antibody against ELTD1 may be useful and potential antiangiogenic treatments against GBM.

SELECTION OF CITATIONS
SEARCH DETAIL
...