Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Chem ; 265: 116097, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38157595

ABSTRACT

Tridecaptins comprise a class of linear cationic lipopeptides with an N-terminal fatty acyl moiety. These 13-mer antimicrobial peptides consist of a combination of d- and l-amino acids, conferring increased proteolytic stability. Intriguingly, they are biosynthesized by non-ribosomal peptide synthetases in the same bacterial species that also produce the cyclic polymyxins displaying similar fatty acid tails. Previously, the des-acyl analog of TriA1 (termed H-TriA1) was found to possess very weak antibacterial activity, albeit it potentiated the effect of several antibiotics. In the present study, two series of des-acyl tridecaptins were explored with the aim of improving the direct antibacterial effect. At the same time, overall physico-chemical properties were modulated by amino acid substitution(s) to diminish the risk of undesired levels of hemolysis and to avoid an impairment of mammalian cell viability, since these properties are typically associated with highly hydrophobic cationic peptides. Microbiology and biophysics tools were used to determine bacterial uptake, while circular dichroism and isothermal calorimetry were used to probe the mode of action. Several analogs had improved antibacterial activity (as compared to that of H-TriA1) against Enterobacteriaceae. Optimization enabled identification of the lead compound 29 that showed a good ADMET profile as well as in vivo efficacy in a variety of mouse models of infection.


Subject(s)
Anti-Bacterial Agents , Bacteria , Peptides , Animals , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Fatty Acids/chemistry , Lipopeptides/pharmacology , Lipopeptides/chemistry , Mammals , Microbial Sensitivity Tests , Cations/chemistry
2.
J Med Chem ; 66(24): 16869-16887, 2023 12 28.
Article in English | MEDLINE | ID: mdl-38088830

ABSTRACT

Corramycin 1 is a novel zwitterionic antibacterial peptide isolated from a culture of the myxobacterium Corallococcus coralloides. Though Corramycin displayed a narrow spectrum and modest MICs against sensitive bacteria, its ADMET and physchem profile as well as its high tolerability in mice along with an outstanding in vivo efficacy in an Escherichia coli septicemia mouse model were promising and prompted us to embark on an optimization program aiming at enlarging the spectrum and at increasing the antibacterial activities by modulating membrane permeability. Scanning the peptidic moiety by the Ala-scan strategy followed by key stabilization and introduction of groups such as a primary amine or siderophore allowed us to enlarge the spectrum and increase the overall developability profile. The optimized Corramycin 28 showed an improved mouse IV PK and a broader spectrum with high potency against key Gram-negative bacteria that translated into excellent efficacy in several in vivo mouse infection models.


Subject(s)
Anti-Bacterial Agents , Escherichia coli Infections , Mice , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/chemistry , Gram-Negative Bacteria , Bacteria , Microbial Sensitivity Tests
3.
Angew Chem Int Ed Engl ; 61(51): e202210747, 2022 12 19.
Article in English | MEDLINE | ID: mdl-36197755

ABSTRACT

Herein, we describe the myxobacterial natural product Corramycin isolated from Corallococcus coralloides. The linear peptide structure contains an unprecedented (2R,3S)-γ-N-methyl-ß-hydroxy-histidine moiety. Corramycin exhibits anti-Gram-negative activity against Escherichia coli (E. coli) and is taken up via two transporter systems, SbmA and YejABEF. Furthermore, the Corramycin biosynthetic gene cluster (BGC) was identified and a biosynthesis model was proposed involving a 12-modular non-ribosomal peptide synthetase/polyketide synthase. Bioinformatic analysis of the BGC combined with the development of a total synthesis route allowed for the elucidation of the molecule's absolute configuration. Importantly, intravenous administration of 20 mg kg-1 of Corramycin in an E. coli mouse infection model resulted in 100 % survival of animals without toxic side effects. Corramycin is thus a promising starting point to develop a potent antibacterial drug against hospital-acquired infections.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Mice , Animals , Anti-Bacterial Agents/chemistry , Polyketide Synthases , Multigene Family
SELECTION OF CITATIONS
SEARCH DETAIL
...