Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Part Fibre Toxicol ; 18(1): 47, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34923995

ABSTRACT

BACKGROUND: Multi-walled carbon nanotubes and nanofibers (CNT/F) have been previously investigated for their potential toxicities; however, comparative studies of the broad material class are lacking, especially those with a larger diameter. Additionally, computational modeling correlating physicochemical characteristics and toxicity outcomes have been infrequently employed, and it is unclear if all CNT/F confer similar toxicity, including histopathology changes such as pulmonary fibrosis. Male C57BL/6 mice were exposed to 40 µg of one of nine CNT/F (MW #1-7 and CNF #1-2) commonly found in exposure assessment studies of U.S. facilities with diameters ranging from 6 to 150 nm. Human fibroblasts (0-20 µg/ml) were used to assess the predictive value of in vitro to in vivo modeling systems. RESULTS: All materials induced histopathology changes, although the types and magnitude of the changes varied. In general, the larger diameter MWs (MW #5-7, including Mitsui-7) and CNF #1 induced greater histopathology changes compared to MW #1 and #3 while MW #4 and CNF #2 were intermediate in effect. Differences in individual alveolar or bronchiolar outcomes and severity correlated with physical dimensions and how the materials agglomerated. Human fibroblast monocultures were found to be insufficient to fully replicate in vivo fibrosis outcomes suggesting in vitro predictive potential depends upon more advanced cell culture in vitro models. Pleural penetrations were observed more consistently in CNT/F with larger lengths and diameters. CONCLUSION: Physicochemical characteristics, notably nominal CNT/F dimension and agglomerate size, predicted histopathologic changes and enabled grouping of materials by their toxicity profiles. Particles of greater nominal tube length were generally associated with increased severity of histopathology outcomes. Larger particle lengths and agglomerates were associated with more severe bronchi/bronchiolar outcomes. Spherical agglomerated particles of smaller nominal tube dimension were linked to granulomatous inflammation while a mixture of smaller and larger dimensional CNT/F resulted in more severe alveolar injury.


Subject(s)
Nanofibers , Nanotubes, Carbon , Pulmonary Fibrosis , Animals , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Nanofibers/toxicity , Nanotubes, Carbon/toxicity , Pulmonary Fibrosis/chemically induced
2.
Part Fibre Toxicol ; 17(1): 62, 2020 12 07.
Article in English | MEDLINE | ID: mdl-33287860

ABSTRACT

BACKGROUND: Carbon nanotubes and nanofibers (CNT/F) have known toxicity but simultaneous comparative studies of the broad material class, especially those with a larger diameter, with computational analyses linking toxicity to their fundamental material characteristics was lacking. It was unclear if all CNT/F confer similar toxicity, in particular, genotoxicity. Nine CNT/F (MW #1-7 and CNF #1-2), commonly found in exposure assessment studies of U.S. facilities, were evaluated with reported diameters ranging from 6 to 150 nm. All materials were extensively characterized to include distributions of physical dimensions and prevalence of bundled agglomerates. Human bronchial epithelial cells were exposed to the nine CNT/F (0-24 µg/ml) to determine cell viability, inflammation, cellular oxidative stress, micronuclei formation, and DNA double-strand breakage. Computational modeling was used to understand various permutations of physicochemical characteristics and toxicity outcomes. RESULTS: Analyses of the CNT/F physicochemical characteristics illustrate that using detailed distributions of physical dimensions provided a more consistent grouping of CNT/F compared to using particle dimension means alone. In fact, analysis of binning of nominal tube physical dimensions alone produced a similar grouping as all characterization parameters together. All materials induced epithelial cell toxicity and micronuclei formation within the dose range tested. Cellular oxidative stress, DNA double strand breaks, and micronuclei formation consistently clustered together and with larger physical CNT/F dimensions and agglomerate characteristics but were distinct from inflammatory protein changes. Larger nominal tube diameters, greater lengths, and bundled agglomerate characteristics were associated with greater severity of effect. The portion of tubes with greater nominal length and larger diameters within a sample was not the majority in number, meaning a smaller percentage of tubes with these characteristics was sufficient to increase toxicity. Many of the traditional physicochemical characteristics including surface area, density, impurities, and dustiness did not cluster with the toxicity outcomes. CONCLUSION: Distributions of physical dimensions provided more consistent grouping of CNT/F with respect to toxicity outcomes compared to means only. All CNT/F induced some level of genotoxicity in human epithelial cells. The severity of toxicity was dependent on the sample containing a proportion of tubes with greater nominal lengths and diameters.


Subject(s)
Air Pollutants/toxicity , Nanofibers/toxicity , Nanotubes, Carbon/toxicity , Air Pollutants/chemistry , DNA Damage , Epithelial Cells , Humans , Inhalation Exposure , Nanofibers/chemistry , Nanotubes, Carbon/chemistry , Particle Size , Surface Properties , United States
3.
Chemosphere ; 241: 125126, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31683444

ABSTRACT

To study the fate of cyclic volatile methyl siloxanes (cVMS) undergoing photooxidation in the environment and to assess the acute toxicity of inhaled secondary aerosols from cVMS, we used an oxidative flow reactor (OFR) to produce aerosols from oxidation of decamethylcyclopentasiloxane (D5). The aerosols produced from this process were characterized for size, shape, and chemical composition. We found that the OFR produced aerosols composed of silicon and oxygen, arranged in chain agglomerates, with primary particles of approximately 31 nm in diameter. Lung cells were exposed to the secondary organosilicon aerosols at estimated doses of 54-116 ng/cm2 using a Vitrocell air-liquid interface system, and organic gases and ozone exposure was minimized through a series of denuders. Siloxane aerosols were not found to be highly toxic.


Subject(s)
Aerosols/chemistry , Lung/drug effects , Siloxanes/chemistry , A549 Cells , Aerosols/toxicity , Gases/chemistry , Humans , Lung/cytology , Oxidation-Reduction , Particle Size , Siloxanes/toxicity
4.
Environ Sci Nano ; 7: 1539-1553, 2020 May 21.
Article in English | MEDLINE | ID: mdl-37205161

ABSTRACT

Manufacturing, processing, use, and disposal of nanoclay-enabled composites potentially lead to the release of nanoclay particles from the polymer matrix in which they are embedded; however, exposures to airborne particles are poorly understood. The present study was conducted to characterize airborne particles released during sanding of nanoclay-enabled thermoplastic composites. Two types of nanoclay, Cloisite® 25A and Cloisite® 93A, were dispersed in polypropylene at 0%, 1%, and 4% loading by weight. Zirconium aluminum oxide (P100/P180 grits) and silicon carbide (P120/P320 grits) sandpapers were used to abrade composites in controlled experiments followed by real-time and offline particle analyses. Overall, sanding the virgin polypropylene with zirconium aluminum oxide sandpaper released more particles compared to silicon carbide sandpaper, with the later exhibiting similar or lower concentrations than that of polypropylene. Thus, a further investigation was performed for the samples collected using the zirconium aluminum oxide sandpaper. The 1% 25A, 1% 93A, and 4% 93A composites generated substantially higher particle number concentrations (1.3-2.6 times) and respirable mass concentrations (1.2-2.3 times) relative to the virgin polypropylene, while the 4% 25A composite produced comparable results, regardless of sandpaper type. It was observed that the majority of the inhalable particles were originated from composite materials with a significant number of protrusions of nanoclay (18-59%). These findings indicate that the percent loading and dispersion of nanoclay in the polypropylene modified the mechanical properties and thus, along with sandpaper type, affected the number of particles released during sanding, implicating the cause of potential adverse health effects.

5.
ACS Nano ; 11(9): 8849-8863, 2017 09 26.
Article in English | MEDLINE | ID: mdl-28759202

ABSTRACT

Pulmonary toxicity studies on carbon nanotubes focus primarily on as-produced materials and rarely are guided by a life cycle perspective or integration with exposure assessment. Understanding toxicity beyond the as-produced, or pure native material, is critical, due to modifications needed to overcome barriers to commercialization of applications. In the first series of studies, the toxicity of as-produced carbon nanotubes and their polymer-coated counterparts was evaluated in reference to exposure assessment, material characterization, and stability of the polymer coating in biological fluids. The second series of studies examined the toxicity of aerosols generated from sanding polymer-coated carbon-nanotube-embedded or neat composites. Postproduction modification by polymer coating did not enhance pulmonary injury, inflammation, and pathology or in vitro genotoxicity of as-produced carbon nanotubes, and for a particular coating, toxicity was significantly attenuated. The aerosols generated from sanding composites embedded with polymer-coated carbon nanotubes contained no evidence of free nanotubes. The percent weight incorporation of polymer-coated carbon nanotubes, 0.15% or 3% by mass, and composite matrix utilized altered the particle size distribution and, in certain circumstances, influenced acute in vivo toxicity. Our study provides perspective that, while the number of workers and consumers increases along the life cycle, toxicity and/or potential for exposure to the as-produced material may greatly diminish.


Subject(s)
Nanotubes, Carbon/toxicity , Occupational Exposure/adverse effects , Aerosols/chemistry , Aerosols/toxicity , Animals , Humans , Lung/pathology , Male , Mice, Inbred C57BL , Mutagens/chemistry , Mutagens/toxicity , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/ultrastructure , Polymers/chemistry , Polymers/toxicity
6.
Environ Sci Technol ; 50(10): 4961-70, 2016 05 17.
Article in English | MEDLINE | ID: mdl-27077697

ABSTRACT

High mass concentrations of atmospheric lead particles are frequently observed in the Delhi, India metropolitan area, although the sources of lead particles are poorly understood. In this study, particles sampled across Delhi (August - December 2008) were analyzed by computer-controlled scanning electron microscopy with energy dispersive X-ray spectroscopy (CCSEM-EDX) to improve our understanding of the spatial and physicochemical variability of lead-rich particles (>90% lead). The mean mass concentration of lead-rich particles smaller than 10 µm (PM10) was 0.7 µg/m(3) (1.5 µg/m(3) std. dev.) with high variability (range: 0-6.2 µg/m(3)). Four samples (16% of 25 samples) with PM10 lead-rich particle concentrations >1.4 µg/m(3) were defined as lead events and studied further. The temporal characteristics, heterogeneous spatial distribution, and wind patterns of events, excluded regional monsoon conditions or common anthropogenic sources from being the major causes of the lead events. Individual particle composition, size, and morphology analysis indicate informal recycling operations of used lead-acid batteries as the likely source of the lead events. This source is not typically included in emission inventories, and the observed isolated hotspots with high lead concentrations could represent an elevated exposure risk in certain neighborhoods of Delhi.


Subject(s)
Lead , Particulate Matter , Air Pollutants , Environmental Monitoring , India , Particle Size
7.
Environ Sci Technol ; 45(8): 3288-96, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21434635

ABSTRACT

The variation in composition and concentration of coarse particles in Rochester, a medium-sized city in western New York, was studied using UNC passive samplers and computer-controlled scanning electron microscopy (CCSEM). The samplers were deployed in a 5 × 5 grid (2 km × 2 km per grid cell) for 2-3 week periods in two seasons (September 2008 and May 2009) at 25 different sites across Rochester. CCSEM analysis yielded size and elemental composition for individual particles and analyzed more than 800 coarse particles per sample. Based on the composition as reflected in the fluoresced X-ray spectrum, the particles were grouped into classes with similar chemical compositions using an adaptive resonance theory (ART) network. The mass fractions of particles in the identified classes were then used to assess the homogeneity of composition and concentration across the measurement domain. These results illustrate how particle sampling using the UNC passive sampler coupled with CCSEM/ART can be used to determine the concentration and source of the coarse particulate matter at multiple sites. The particle compositions were dominated by elements suggesting that the major particle sources are road dust and biological particles. Considerable heterogeneity in both composition and concentration were observed between adjacent sites as indicated by cofficient of divergence analyses.


Subject(s)
Air Pollutants/analysis , Air Pollution/statistics & numerical data , Particulate Matter/analysis , Air Pollutants/chemistry , Cities , Environmental Monitoring/methods , Microscopy, Electron, Scanning , Particulate Matter/chemistry
8.
J Air Waste Manag Assoc ; 59(1): 78-90, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19216191

ABSTRACT

The organic carbon (OC) and elemental carbon (EC) content of filter-based, 24-hr integrated particulate matter with aerodynamic diameters between 2.5 and 10 microm (PM10-2.5) was measured at two urban and two rural locations in the southeastern United States. On average, total carbon (OC + EC) comprised approximately 30% of PM10-2.5 mass at these four sites. Carbonate carbon was measured on a subset of samples from three sites and was found to be undetectable at a rural site in central Alabama, less than 2% of PM10-2.5 at an urban site in Georgia, and less than 10% of PM10-2.5 at an urban-industrial site in Alabama. Manual scanning electron microscopy (SEM) and computer-controlled SEM (CCSEM) along with energy dispersive X-ray spectroscopy (EDS) were used to identify individual carbonaceous particles in a selected subset of samples collected at one rural site and one urban-industrial site in Alabama. CCSEM results showed that biological material (e.g., fungal spores, pollen, and vegetative detritus) accounted for 60-70% of the carbonaceous mass in PM10-2.5 samples with concentrations in the range of 2-16 microg/m3. Samples with higher PM10-2.5 concentrations (25-42 microg/m3) at the urban-industrial site were found by manual SEM to have significant amounts of unidentified carbonaceous material, likely originating from local industrial activities. Both filter-based OC and EC concentrations and SEM-identified biological material tended to have higher concentrations during warmer months. Upper limits for organic mass (OM) to OC ratios (OM/OC) are estimated for PM10-2.5 samples at 2.1 for urban sites and 2.6-2.7 for rural sites.


Subject(s)
Air Pollution/analysis , Carbon/analysis , Particulate Matter/analysis , Carbon/chemistry , Environmental Monitoring , Microscopy, Electron, Scanning , Particle Size , Particulate Matter/chemistry , Pollen/ultrastructure , Southeastern United States
SELECTION OF CITATIONS
SEARCH DETAIL