Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plant J ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753873

ABSTRACT

Plant mitochondrial and chloroplast transcripts are subject to numerous events of specific cytidine-to-uridine (C-to-U) RNA editing to correct genetic information. Key protein factors for this process are specific RNA-binding pentatricopeptide repeat (PPR) proteins, which are encoded in the nucleus and post-translationally imported into the two endosymbiotic organelles. Despite hundreds of C-to-U editing sites in the plant organelles, no comparable editing has been found for nucleo-cytosolic mRNAs raising the question why plant RNA editing is restricted to chloroplasts and mitochondria. Here, we addressed this issue in the model moss Physcomitrium patens, where all PPR-type RNA editing factors comprise specific RNA-binding and cytidine deamination functionalities in single proteins. To explore whether organelle-type RNA editing can principally also take place in the plant cytosol, we expressed PPR56, PPR65 and PPR78, three editing factors recently shown to also function in a bacterial setup, together with cytosolic co-transcribed native targets in Physcomitrium. While we obtained unsatisfying results upon their constitutive expression, we found strong cytosolic RNA editing under hormone-inducible expression. Moreover, RNA-Seq analyses revealed varying numbers of up to more than 900 off-targets in other cytosolic transcripts. We conclude that PPR-mediated C-to-U RNA editing is not per se incompatible with the plant cytosol but that its limited target specificity has restricted its occurrence to the much less complex transcriptomes of mitochondria and chloroplast in the course of evolution.

2.
Plant Cell ; 36(3): 727-745, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38000897

ABSTRACT

Cytidine (C)-to-uridine (U) RNA editing in plant organelles relies on specific RNA-binding pentatricopeptide repeat (PPR) proteins. In the moss Physcomitrium patens, all such RNA editing factors feature a C-terminal DYW domain that acts as the cytidine deaminase for C-to-U conversion. PPR78 of Physcomitrium targets 2 mitochondrial editing sites, cox1eU755SL and rps14eU137SL. Remarkably, the latter is edited to highly variable degrees in different mosses. Here, we aimed to unravel the coevolution of PPR78 and its 2 target sites in mosses. Heterologous complementation in a Physcomitrium knockout line revealed that the variable editing of rps14eU137SL depends on the PPR arrays of different PPR78 orthologues but not their C-terminal domains. Intriguingly, PPR78 has remained conserved despite the simultaneous loss of editing at both known targets among Hypnales (feather mosses), suggesting it serves an additional function. Using a recently established RNA editing assay in Escherichia coli, we confirmed site-specific RNA editing by PPR78 in the bacterium and identified 4 additional off-targets in the bacterial transcriptome. Based on conservation profiles, we predicted ccmFNeU1465RC as a candidate editing target of PPR78 in moss mitochondrial transcriptomes. We confirmed editing at this site in several mosses and verified that PPR78 targets ccmFNeU1465RC in the bacterial editing system, explaining the conservation and functional adaptation of PPR78 during moss evolution.


Subject(s)
Bryophyta , Bryopsida , RNA Editing/genetics , Plant Proteins/metabolism , Bryophyta/metabolism , Bryopsida/genetics , Bryopsida/metabolism , Cytidine/genetics , Cytidine/metabolism , Uridine/genetics , Uridine/metabolism , RNA, Plant/metabolism
3.
Plant J ; 116(3): 840-854, 2023 11.
Article in English | MEDLINE | ID: mdl-37565789

ABSTRACT

The protein factors for the specific C-to-U RNA editing events in plant mitochondria and chloroplasts possess unique arrays of RNA-binding pentatricopeptide repeats (PPRs) linked to carboxy-terminal cytidine deaminase DYW domains via the extension motifs E1 and E2. The E1 and E2 motifs have distant similarities to tetratricopeptide repeats known to mediate protein-protein interactions but their precise function is unclear. Here, we investigate the tolerance of PPR56 and PPR65, two functionally characterized RNA editing factors of the moss Physcomitrium patens, for the creation of chimeras by variably replacing their C-terminal protein regions. Making use of a heterologous RNA editing assay system in Escherichia coli we find that heterologous DYW domains can strongly restrict or widen the spectrum of off-targets in the bacterial transcriptome for PPR56. Surprisingly, our data suggest that these changes are not only caused by the preference of a given heterologous DYW domain for the immediate sequence environment of the cytidine to be edited but also by a long-range impact on the nucleotide selectivity of the upstream PPRs.


Subject(s)
Plant Proteins , RNA Editing , RNA, Plant/metabolism , Plant Proteins/metabolism , RNA Editing/genetics , Cytidine Deaminase/chemistry , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , Chloroplasts/metabolism
4.
Nucleic Acids Res ; 50(17): 9966-9983, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36107771

ABSTRACT

RNA editing processes are strikingly different in animals and plants. Up to thousands of specific cytidines are converted into uridines in plant chloroplasts and mitochondria whereas up to millions of adenosines are converted into inosines in animal nucleo-cytosolic RNAs. It is unknown whether these two different RNA editing machineries are mutually incompatible. RNA-binding pentatricopeptide repeat (PPR) proteins are the key factors of plant organelle cytidine-to-uridine RNA editing. The complete absence of PPR mediated editing of cytosolic RNAs might be due to a yet unknown barrier that prevents its activity in the cytosol. Here, we transferred two plant mitochondrial PPR-type editing factors into human cell lines to explore whether they could operate in the nucleo-cytosolic environment. PPR56 and PPR65 not only faithfully edited their native, co-transcribed targets but also different sets of off-targets in the human background transcriptome. More than 900 of such off-targets with editing efficiencies up to 91%, largely explained by known PPR-RNA binding properties, were identified for PPR56. Engineering two crucial amino acid positions in its PPR array led to predictable shifts in target recognition. We conclude that plant PPR editing factors can operate in the entirely different genetic environment of the human nucleo-cytosol and can be intentionally re-engineered towards new targets.


Subject(s)
Plant Proteins , RNA-Binding Proteins , Amino Acids , Cytidine , Humans , Plant Proteins/genetics , RNA/genetics , RNA, Mitochondrial/genetics , RNA, Plant/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Uridine/genetics
5.
Commun Biol ; 2: 85, 2019.
Article in English | MEDLINE | ID: mdl-30854477

ABSTRACT

RNA editing converting cytidines into uridines is a hallmark of gene expression in land plant chloroplasts and mitochondria. Pentatricopeptide repeat (PPR) proteins have a key role in target recognition, but the functional editosome in the plant organelles has remained elusive. Here we show that individual Physcomitrella patens DYW-type PPR proteins alone can perform efficient C-to-U editing in Escherichia coli reproducing the moss mitochondrial editing. Single amino acid exchanges in the DYW domain abolish RNA editing, confirming it as the functional cytidine deaminase. The modification of RNA targets and the identification of numerous off-targets in the E. coli transcriptome reveal nucleotide identities critical for RNA recognition and cytidine conversion. The straightforward amenability of the new E. coli setup will accelerate future studies on RNA target recognition through PPRs, on the C-to-U editing deamination machinery and towards future establishment of transcript editing in other genetic systems.


Subject(s)
Escherichia coli/genetics , Escherichia coli/metabolism , Plant Proteins/chemistry , Plant Proteins/genetics , Protein Domains , RNA Editing , Repetitive Sequences, Amino Acid , Amino Acid Sequence , Gene Expression , Mutation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...