Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 141
Filter
1.
Circulation ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38660786

ABSTRACT

BACKGROUND: Dysregulated metabolism of bioactive sphingolipids, including ceramides and sphingosine-1-phosphate, has been implicated in cardiovascular disease, although the specific species, disease contexts, and cellular roles are not completely understood. Sphingolipids are produced by the serine palmitoyltransferase enzyme, canonically composed of 2 subunits, SPTLC1 (serine palmitoyltransferase long chain base subunit 1) and SPTLC2 (serine palmitoyltransferase long chain base subunit 2). Noncanonical sphingolipids are produced by a more recently described subunit, SPTLC3 (serine palmitoyltransferase long chain base subunit 3). METHODS: The noncanonical (d16) and canonical (d18) sphingolipidome profiles in cardiac tissues of patients with end-stage ischemic cardiomyopathy and in mice with ischemic cardiomyopathy were analyzed by targeted lipidomics. Regulation of SPTLC3 by HIF1α under ischemic conditions was determined with chromatin immunoprecipitation. Transcriptomics, lipidomics, metabolomics, echocardiography, mitochondrial electron transport chain, mitochondrial membrane fluidity, and mitochondrial membrane potential were assessed in the cSPTLC3KO transgenic mice we generated. Furthermore, morphological and functional studies were performed on cSPTLC3KO mice subjected to permanent nonreperfused myocardial infarction. RESULTS: Herein, we report that SPTLC3 is induced in both human and mouse models of ischemic cardiomyopathy and leads to production of atypical sphingolipids bearing 16-carbon sphingoid bases, resulting in broad changes in cell sphingolipid composition. This induction is in part attributable to transcriptional regulation by HIF1α under ischemic conditions. Furthermore, cardiomyocyte-specific depletion of SPTLC3 in mice attenuates oxidative stress, fibrosis, and hypertrophy in chronic ischemia, and mice demonstrate improved cardiac function and increased survival along with increased ketone and glucose substrate metabolism utilization. Depletion of SPTLC3 mechanistically alters the membrane environment and subunit composition of mitochondrial complex I of the electron transport chain, decreasing its activity. CONCLUSIONS: Our findings suggest a novel essential role for SPTLC3 in electron transport chain function and a contribution to ischemic injury by regulating complex I activity.

2.
FASEB J ; 38(2): e23404, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38197290

ABSTRACT

The induction of acute endoplasmic reticulum (ER) stress damages the electron transport chain (ETC) in cardiac mitochondria. Activation of mitochondria-localized calpain 1 (CPN1) and calpain 2 (CPN2) impairs the ETC in pathological conditions, including aging and ischemia-reperfusion in settings where ER stress is increased. We asked if the activation of calpains causes the damage to the ETC during ER stress. Control littermate and CPNS1 (calpain small regulatory subunit 1) deletion mice were used in the current study. CPNS1 is an essential subunit required to maintain CPN1 and CPN2 activities, and deletion of CPNS1 prevents their activation. Tunicamycin (TUNI, 0.4 mg/kg) was used to induce ER stress in C57BL/6 mice. Cardiac mitochondria were isolated after 72 h of TUNI treatment. ER stress was increased in both control littermate and CPNS1 deletion mice with TUNI treatment. The TUNI treatment activated both cytosolic and mitochondrial CPN1 and 2 (CPN1/2) in control but not in CPNS1 deletion mice. TUNI treatment led to decreased oxidative phosphorylation and complex I activity in control but not in CPNS1 deletion mice compared to vehicle. The contents of complex I subunits, including NDUFV2 and ND5, were decreased in control but not in CPNS1 deletion mice. TUNI treatment also led to decreased oxidation through cytochrome oxidase (COX) only in control mice. Proteomic study showed that subunit 2 of COX was decreased in control but not in CPNS1 deletion mice. Our results provide a direct link between activation of CPN1/2 and complex I and COX damage during acute ER stress.


Subject(s)
Calpain , Proteomics , Animals , Mice , Mice, Inbred C57BL , Calpain/genetics , Electron Transport , Electron Transport Complex I , Electron Transport Complex IV , Endoplasmic Reticulum Stress , Mitochondria, Heart
3.
Am J Physiol Heart Circ Physiol ; 326(2): H385-H395, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38099846

ABSTRACT

Mitochondrial function in aged hearts is impaired, and studies of isolated mitochondria are commonly used to assess their function. The two populations of cardiac mitochondria, subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM), are affected by aging. However, the yield of these mitochondria, particularly SSM, is limited in the mouse heart because of the smaller heart size. To address this issue, the authors developed a method to isolate a mixed population (MIX) of SSM and IFM mitochondria from a single mouse heart. The aim of the study was to compare the mitochondrial function between SSM, IFM, and the MIX population from young and aged mouse hearts. The MIX population had a higher yield of total protein and citrate synthase activity from both young and aged hearts compared with the individual yields of SSM or IFM. Oxidative phosphorylation (OXPHOS) decreased in aged SSM and IFM compared with young SSM and IFM, as well as in the MIX population isolated from aged hearts compared with young hearts, when using complex I or IV substrates. Furthermore, aging barely affected the sensitivity to mitochondrial permeability transition pore (MPTP) opening in SSM, whereas the sensitivity was increased in IFM isolated from aged hearts and in the MIX population from aged hearts compared with the corresponding populations isolated from young hearts. These results suggest that mitochondrial dysfunction exists in aged hearts and the isolation of a MIX population of mitochondria from the mouse heart is a potential approach to studying mitochondrial function in the mouse heart.NEW & NOTEWORTHY We developed two methods to isolate mitochondria from a single mouse heart. We compared mitochondrial function in young and aged mice using mitochondria isolated with different methods. Both methods can be successfully used to isolate cardiac mitochondria from single mouse hearts. Our results provide the flexibility to isolate mitochondria from a single mouse heart based on the purpose of the study.


Subject(s)
Heart , Mitochondrial Diseases , Mice , Animals , Mitochondria, Heart/metabolism , Oxidative Phosphorylation , Aging , Mitochondrial Diseases/metabolism
4.
Stem Cell Res Ther ; 14(1): 320, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37936209

ABSTRACT

BACKGROUND: Human mitochondrial DNA mutations are associated with common to rare mitochondrial disorders, which are multisystemic with complex clinical pathologies. The pathologies of these diseases are poorly understood and have no FDA-approved treatments leading to symptom management. Leigh syndrome (LS) is a pediatric mitochondrial disorder that affects the central nervous system during early development and causes death in infancy. Since there are no adequate models for understanding the rapid fatality associated with LS, human-induced pluripotent stem cell (hiPSC) technology has been recognized as a useful approach to generate patient-specific stem cells for disease modeling and understanding the origins of the phenotype. METHODS: hiPSCs were generated from control BJ and four disease fibroblast lines using a cocktail of non-modified reprogramming and immune evasion mRNAs and microRNAs. Expression of hiPSC-associated intracellular and cell surface markers was identified by immunofluorescence and flow cytometry. Karyotyping of hiPSCs was performed with cytogenetic analysis. Sanger and next-generation sequencing were used to detect and quantify the mutation in all hiPSCs. The mitochondrial respiration ability and glycolytic function were measured by the Seahorse Bioscience XFe96 extracellular flux analyzer. RESULTS: Reprogrammed hiPSCs expressed pluripotent stem cell markers including transcription factors POU5F1, NANOG and SOX2 and cell surface markers SSEA4, TRA-1-60 and TRA-1-81 at the protein level. Sanger sequencing analysis confirmed the presence of mutations in all reprogrammed hiPSCs. Next-generation sequencing demonstrated the variable presence of mutant mtDNA in reprogrammed hiPSCs. Cytogenetic analyses confirmed the presence of normal karyotype in all reprogrammed hiPSCs. Patient-derived hiPSCs demonstrated decreased maximal mitochondrial respiration, while mitochondrial ATP production was not significantly different between the control and disease hiPSCs. In line with low maximal respiration, the spare respiratory capacity was lower in all the disease hiPSCs. The hiPSCs also demonstrated neural and cardiac differentiation potential. CONCLUSION: Overall, the hiPSCs exhibited variable mitochondrial dysfunction that may alter their differentiation potential and provide key insights into clinically relevant developmental perturbations.


Subject(s)
Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Humans , Child , Induced Pluripotent Stem Cells/metabolism , Cell Differentiation/genetics , Mutation/genetics , Energy Metabolism/genetics
5.
Mech Ageing Dev ; 215: 111859, 2023 10.
Article in English | MEDLINE | ID: mdl-37661065

ABSTRACT

Aging-related cardiovascular disease is influenced by multiple factors, with oxidative stress being a key contributor. Aging-induced endoplasmic reticulum (ER) stress exacerbates oxidative stress by impairing mitochondrial function. Furthermore, a decline in antioxidants, including peroxiredoxins (PRDXs), augments the oxidative stress during aging. To explore if ER stress leads to PRDX degradation during aging, young adult (3 mo.) and aged (24 mo.) male mice were studied. Treatment with 4-phenylbutyrate (4-PBA) was used to alleviate ER stress in young adult and aged mice. Aged hearts showed elevated oxidative stress levels compared to young hearts. However, treatment with 4-PBA to attenuate ER stress reduced oxidative stress in aged hearts, indicating that ER stress contributes to increased oxidative stress in aging. Moreover, aging resulted in reduced levels of peroxiredoxin 3 (PRDX3) in mitochondria and peroxiredoxin 4 (PRDX4) in myocardium. While 4-PBA treatment improved PRDX3 content in aged hearts, it did not restore PRDX4 content in aged mice. These findings suggest that ER stress not only leads to mitochondrial dysfunction and increased oxidant stress but also impairs a vital antioxidant defense through decreased PRDX3 content. Additionally, the results suggest that PRDX4 may contribute an upstream role in inducing ER stress during aging.


Subject(s)
Heart , Peroxiredoxins , Mice , Male , Animals , Peroxiredoxins/metabolism , Oxidative Stress , Antioxidants/pharmacology , Antioxidants/metabolism , Endoplasmic Reticulum Stress
7.
Transplant Proc ; 55(7): 1495-1503, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37422374

ABSTRACT

BACKGROUND: We quantified the myocardial infarct size with varying global ischemia durations and studied the benefits of Cyclosporine A (CyA) in reducing cardiac injury in ex vivo and transplanted rat hearts. METHODS: Infarct size was measured after 15, 20, 25, 30, and 35 minutes of in vivo global ischemia (n = 34) and compared with control beating-heart donor (CBD) hearts (n = 10). For heart function assessment, donation after circulatory death (DCD) rat hearts (n = 20) were procured after 25 minutes of in vivo ischemia and reanimated ex vivo for 90 minutes. Half of the DCD hearts received CyA (0.5 mM) at reanimation. The CBD hearts (n = 10) served as controls. A separate group of CBD and DCD (with or without CyA treatment) hearts underwent heterotopic heart transplantation; heart function was measured at 48 hours. RESULTS: Infarct size was 25% with 25 minutes of ischemia and increased significantly with 30 and 35 minutes to 32% and 41%, respectively. CyA treatment decreased infarct size in DCD hearts (15% vs 25%). Heart function in the transplanted DCD hearts was significantly better with CyA treatment and was comparable to CBD hearts. CONCLUSIONS: CyA administered at reperfusion limited infarct size in DCD hearts and improved their function in transplanted hearts.


Subject(s)
Coronary Artery Disease , Heart Transplantation , Myocardial Infarction , Rats , Animals , Cyclosporine/pharmacology , Heart , Heart Transplantation/adverse effects , Tissue Donors
8.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1868(10): 159366, 2023 10.
Article in English | MEDLINE | ID: mdl-37473835

ABSTRACT

The endoplasmic reticulum (ER) plays a key role in the regulation of protein folding, lipid synthesis, calcium homeostasis, and serves as a primary site of sphingolipid biosynthesis. ER stress (ER dysfunction) participates in the development of mitochondrial dysfunction during aging. Mitochondria are in close contact with the ER through shared mitochondria associated membranes (MAM). Alteration of sphingolipids contributes to mitochondria-driven cell injury. Cardiolipin is a phospholipid that is critical to maintain enzyme activity in the electron transport chain. The aim of the current study was to characterize the changes in sphingolipids and cardiolipin in ER, MAM, and mitochondria during the progression of aging in young (3 mo.), middle (18 mo.), and aged (24 mo.) C57Bl/6 mouse hearts. ER stress increased in hearts from 18 mo. mice and mice exhibited mitochondrial dysfunction by 24 mo. Hearts were pooled to isolate ER, MAM, and subsarcolemmal mitochondria (SSM). LC-MS/MS quantification of lipid content showed that aging increased ceramide content in ER and MAM. In addition, the contents of sphingomyelin and monohexosylceramides are also increased in the ER from aged mice. Aging increased the total cardiolipin content in the ER. Aging did not alter the total cardiolipin content in mitochondria or MAM yet altered the composition of cardiolipin with aging in line with increased oxidative stress compared to young mice. These results indicate that alteration of sphingolipids can contribute to the ER stress and mitochondrial dysfunction that occurs during aging.


Subject(s)
Aging , Endoplasmic Reticulum Stress , Mitochondria , Sphingolipids , Animals , Mice , Aging/pathology , Mitochondria/chemistry , Mitochondria/pathology , Cardiolipins/analysis , Ceramides/analysis , Endoplasmic Reticulum/chemistry , Sphingolipids/analysis , Sphingolipids/metabolism
9.
Aging Dis ; 14(5): 1488-1491, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37196121

ABSTRACT

Elderly patients (age > 75) sustain larger infarcts with greater mortality from ST elevation myocardial infarcts (STEMI) despite successful reperfusion treatment. Elderly age remains an independent risk despite correction for clinical and angiographic variables. The elderly represent a high-risk population and may benefit from treatment in addition to reperfusion alone. We hypothesized that modulation of cardiac signaling and metabolism with acute, high dose metformin given at reperfusion would exhibit additional cardioprotection. Using a translational aging murine model (22-24-month C57BL/6J mice) of in vivo STEMI (45 min artery occlusion with reperfusion for 24 hours); treatment acutely at reperfusion by high dose metformin decreased infarct size and enhanced contractile recovery, demonstrating cardioprotection in the high-risk aging heart.

10.
Biochem Biophys Res Commun ; 659: 46-53, 2023 06 04.
Article in English | MEDLINE | ID: mdl-37031594

ABSTRACT

Ischemic heart disease (IHD) is the leading cause of death on a global scale. Despite significant advances in the reperfusion treatment of acute myocardial infarction, there is still a significant early mortality rate among the elderly, as angioplasty-achieved reperfusion can exacerbate myocardial damage, leading to severe ischemia/reperfusion (I/R) injury and induce fatal arrhythmias. Mitochondria are a key mediator of ischemic insults; a transient blockade of the electron transport chain (ETC) at complex I during reperfusion can reduce myocardial infarct caused by ischemic insults. The reversible, transient modulation of complex I during early reperfusion is limited by the available of clinically tractable agents. We employed the novel use of acute, high dose metformin to modulate complex I activity during early reperfusion to decrease cardiac injury in the high-risk aged heart. Young (3-6 months) and aged (22-24 months) male and female C57BL/6 J mice were subjected to in vivo regional ischemia for 45 min, followed by metformin (2 mM, i. v.) injection 5 min prior to reperfusion for 24 h. The cardiac functions were measured with echocardiography. A Seahorse XF24 Analyzer was used to ascertain mitochondrial function. Cardiomyocyte sarcomere shortening and calcium transients were measured using the IonOptix Calcium and Contractility System. The results demonstrated that administration of acute, high dose metformin at the onset of reperfusion significantly limited cardiac damage and rescued cardiac dysfunction caused by I/R in both young and aged mice. Importantly, metformin treatment improves contractile functions of isolated cardiomyocytes and maintains mitochondrial integrity under I/R stress conditions. Thus, acute metformin administration at the onset of reperfusion has potential as a mitochondrial-based therapeutic to mitigate reperfusion injury and reduce infarct size in the elderly heart attack patient who remains at greater mortality risk despite reperfusion alone.


Subject(s)
Metformin , Myocardial Infarction , Myocardial Reperfusion Injury , Male , Female , Mice , Animals , Metformin/pharmacology , Metformin/therapeutic use , Myocardial Reperfusion Injury/metabolism , Calcium/metabolism , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Myocardial Infarction/metabolism , Mitochondria/metabolism , Ischemia/metabolism , Energy Metabolism , Mitochondria, Heart/metabolism
11.
J Cardiovasc Pharmacol ; 81(6): 389-391, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36995087

ABSTRACT

ABSTRACT: Donation after circulatory death (DCD) donor hearts sustain ischemic damage and are not routinely used for heart transplantation. DCD heart injury, particularly reperfusion injury, is primarily mediated by releasing reactive oxygen species from the damaged mitochondria (complex I of the electron transport chain). Amobarbital (AMO) is a transient inhibitor of complex I and is known to reduce releasing reactive oxygen species generation. We studied the beneficial effects of AMO in transplanted DCD hearts. Sprague-Dawley rats were assigned to 4 groups-DCD or DCD + AMO donors and control beating-heart donors (CBD) or CBD + AMO donors (n = 6-8 each). Anesthetized rats were connected to a ventilator. The right carotid artery was cannulated, heparin and vecuronium were administered. The DCD process started by disconnecting the ventilator. DCD hearts were procured after 25 minutes of in-vivo ischemia, whereas CBD hearts were procured without ischemia. At procurement, all donor hearts received 10 mL of University of Wisconsin cardioplegia solution. The CBD + AMO and DCD + AMO groups received AMO (2 mM) dissolved in cardioplegia. Heterotopic heart transplantation was performed by anastomosing the donor aorta and pulmonary artery to the recipient's abdominal aorta and inferior vena cava. After 14 days, transplanted heart function was measured with a balloon tip catheter placed in the left ventricle. Compared with CBD hearts, DCD hearts had significantly lower developed pressure. AMO treatment significantly improved cardiac function in DCD hearts. Treatment of DCD hearts at the time of reperfusion with AMO resulted in an improvement of transplanted heart function that was comparable with the CBD hearts.


Subject(s)
Heart Transplantation , Rats , Animals , Humans , Heart Transplantation/adverse effects , Heart Transplantation/methods , Tissue Donors , Reactive Oxygen Species , Electron Transport , Rats, Sprague-Dawley , Death
12.
Cells ; 12(6)2023 03 08.
Article in English | MEDLINE | ID: mdl-36980186

ABSTRACT

Acute kidney injury (AKI) leads to acute cardiac injury and dysfunction in cardiorenal syndrome Type 3 (CRS3) through oxidative stress (OS). The stress-inducible Sestrin2 (Sesn2) protein reduces reactive oxygen species (ROS) accumulation and activates AMP-dependent protein kinase (AMPK) to regulate cellular metabolism and energetics during OS. Sesn2 levels and its protective effects decline in the aged heart. Antidiabetic drug metformin upregulates Sesn2 levels in response to ischemia-reperfusion (IR) stress. However, the role of metformin in CRS3 remains unknown. This study seeks to explore how the age-related decrease in cardiac Sesn2 levels contributes to cardiac intolerance to AKI-induced insults, and how metformin ameliorates CRS3 through Sesn2. Young (3-5 months) and aged (21-23 months) C57BL/6J wild-type mice along with cardiomyocyte-specific knockout (cSesn2-/-) and their wild type of littermate (Sesn2f/f) C57BL/6J mice were subjected to AKI for 15 min followed by 24 h of reperfusion. Cardiac and mitochondrial functions were evaluated through echocardiograms and seahorse mitochondria respirational analysis. Renal and cardiac tissue was collected for histological analysis and immunoblotting. The results indicate that metformin could significantly rescue AKI-induced cardiac dysfunction and injury via Sesn2 through an improvement in systolic and diastolic function, fibrotic and cellular damage, and mitochondrial function in young, Sesn2f/f, and especially aged mice. Metformin significantly increased Sesn2 expression under AKI stress in the aged left-ventricular tissue. Thus, this study suggests that Sesn2 mediates the cardioprotective effects of metformin during post-AKI.


Subject(s)
Acute Kidney Injury , Cardio-Renal Syndrome , Metformin , Mice , Animals , Metformin/pharmacology , Metformin/therapeutic use , Cardio-Renal Syndrome/drug therapy , AMP-Activated Protein Kinases/metabolism , Mice, Inbred C57BL , Acute Kidney Injury/drug therapy
13.
J Lipid Res ; 64(5): 100363, 2023 05.
Article in English | MEDLINE | ID: mdl-36966904

ABSTRACT

CYP7B1 catalyzes mitochondria-derived cholesterol metabolites such as (25R)26-hydroxycholesterol (26HC) and 3ß-hydroxy-5-cholesten-(25R)26-oic acid (3ßHCA) and facilitates their conversion to bile acids. Disruption of 26HC/3ßHCA metabolism in the absence of CYP7B1 leads to neonatal liver failure. Disrupted 26HC/3ßHCA metabolism with reduced hepatic CYP7B1 expression is also found in nonalcoholic steatohepatitis (NASH). The current study aimed to understand the regulatory mechanism of mitochondrial cholesterol metabolites and their contribution to onset of NASH. We used Cyp7b1-/- mice fed a normal diet (ND), Western diet (WD), or high-cholesterol diet (HCD). Serum and liver cholesterol metabolites as well as hepatic gene expressions were comprehensively analyzed. Interestingly, 26HC/3ßHCA levels were maintained at basal levels in ND-fed Cyp7b1-/- mice livers by the reduced cholesterol transport to mitochondria, and the upregulated glucuronidation and sulfation. However, WD-fed Cyp7b1-/- mice developed insulin resistance (IR) with subsequent 26HC/3ßHCA accumulation due to overwhelmed glucuronidation/sulfation with facilitated mitochondrial cholesterol transport. Meanwhile, Cyp7b1-/- mice fed an HCD did not develop IR or subsequent evidence of liver toxicity. HCD-fed mice livers revealed marked cholesterol accumulation but no 26HC/3ßHCA accumulation. The results suggest 26HC/3ßHCA-induced cytotoxicity occurs when increased cholesterol transport into mitochondria is coupled to decreased 26HC/3ßHCA metabolism driven with IR. Supportive evidence for cholesterol metabolite-driven hepatotoxicity is provided in a diet-induced nonalcoholic fatty liver mouse model and by human specimen analyses. This study uncovers an insulin-mediated regulatory pathway that drives the formation and accumulation of toxic cholesterol metabolites within the hepatocyte mitochondria, mechanistically connecting IR to cholesterol metabolite-induced hepatocyte toxicity which drives nonalcoholic fatty liver disease.


Subject(s)
Insulin Resistance , Non-alcoholic Fatty Liver Disease , Humans , Mice , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Insulin/metabolism , Liver/metabolism , Cholesterol/metabolism , Mitochondria/metabolism , Disease Models, Animal , Diet, High-Fat , Mice, Inbred C57BL
14.
Aging Cell ; 22(4): e13800, 2023 04.
Article in English | MEDLINE | ID: mdl-36797808

ABSTRACT

Ischemic heart disease (IHD) is the leading cause of death, with age range being the primary factor for development. The mechanisms by which aging increases vulnerability to ischemic insult are not well understood. We aim to use single-cell RNA sequencing to discover transcriptional differences in various cell types between aged and young mice, which may contribute to aged-related vulnerability to ischemic insult. Utilizing 10× Genomics Single-Cell RNA sequencing, we were able to complete bioinformatic analysis to identity novel differential gene expression. During the analysis of our collected samples, we detected Pyruvate Dehydrogenase Kinase 4 (Pdk4) expression to be remarkably differentially expressed. Particularly in cardiomyocyte cell populations, Pdk4 was found to be significantly upregulated in the young mouse population compared to the aged mice under ischemic/reperfusion conditions. Pdk4 is responsible for inhibiting the enzyme pyruvate dehydrogenase, resulting in the regulation of glucose metabolism. Due to decreased Pdk4 expression in aged cardiomyocytes, there may be an increased reliance on glucose oxidization for energy. Through biochemical metabolomics analysis, it was observed that there is a greater abundance of pyruvate in young hearts in contrast to their aged counterparts, indicating less glycolytic activity. We believe that Pdk4 response provides valuable insight towards mechanisms that allow for the young heart to handle ischemic insult stress more effectively than the aged heart.


Subject(s)
Myocytes, Cardiac , Protein Kinases , Mice , Animals , Myocytes, Cardiac/metabolism , Protein Kinases/metabolism , Pyruvates , Aging/genetics
15.
Am J Physiol Heart Circ Physiol ; 324(1): H57-H66, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36426883

ABSTRACT

Donation after circulatory death (DCD) donor hearts are not routinely used for heart transplantation (HTx) because of ischemic damage, which is inherent to the DCD process. HTx outcomes are suboptimal in males who received female donor hearts. The exact mechanism for suboptimal outcomes from female donor hearts has not been defined. Differential susceptibility to ischemia tolerance, which would play a significant role in DCD donation, could be a reason but has not been studied. We studied the influence of sex on global myocardial ischemia tolerance and mitochondrial function. Sprague-Dawley rats of both sexes were assigned to DCD (n = 32) or control beating-heart donor (CBD, n = 28) groups. DCD hearts underwent 25 min of in vivo global myocardial ischemia and 90 min of ex vivo Krebs-Henseleit buffer perfusion at 37°C. CBD hearts were procured without ischemia. Infarct size was determined in hearts following 90 min of reperfusion, and in another set of hearts, mitochondrial function (oxidative-phosphorylation) was studied following 60 min of reperfusion. Infarct size was increased 3.3-fold in male and 3.1-fold in female DCD hearts compared with CBD hearts. However, infarct size (%) was comparable in female and male DCD hearts (male: 25.4 ± 3.7 vs. female 19.0 ± 3.3, P = NS). Oxidative phosphorylation was similarly decreased in male and female DCD hearts' mitochondria compared with CBD hearts' mitochondria. Thus, neither infarct size nor mitochondrial dysfunction was higher in female DCD hearts. These results suggest that the susceptibility to ischemia is not the reason for suboptimal HTx outcomes with female donor hearts.NEW & NOTEWORTHY The current study shows cardiac injury is not increased in female DCD hearts following global ischemia-reperfusion compared with male DCD hearts. In addition, mitochondrial dysfunction with DCD ischemia-reperfusion is comparable in both sexes. Sex-specific immune responses and hormone receptor modulation may contribute to suboptimal outcomes in male HTx recipients with female donor hearts.


Subject(s)
Coronary Artery Disease , Heart Transplantation , Myocardial Ischemia , Rats , Animals , Male , Female , Humans , Tissue Donors , Rats, Sprague-Dawley , Mitochondria, Heart , Infarction
16.
Transl Res ; 252: 9-20, 2023 02.
Article in English | MEDLINE | ID: mdl-35948198

ABSTRACT

Despite significant advances and the continuous development of novel, effective therapies to treat a variety of malignancies, cancer therapy-induced cardiotoxicity has been identified as a prominent cause of morbidity and mortality, closely competing with secondary malignancies. This unfortunate limitation has prompted the inception of the field of cardio-oncology with its purpose to provide the necessary knowledge and key information on mechanisms that support the use of the most efficacious cancer therapy with minimal or no interruption while paying close attention to preventing cardiovascular related morbidity and mortality. Several mechanisms that contribute to cancer therapy-induced cardiotoxicity have been proposed and studied. These mainly involve mitochondrial dysfunction and reactive oxygen species-induced oxidative stress, lysosomal damage, impaired autophagy, cell senescence, DNA damage, and sterile inflammation with the formation and activation of the NLRP3 inflammasome. In this review, we focus on describing the principal mechanisms for different classes of cancer therapies that lead to cardiotoxicity involving the NLRP3 inflammasome. We also summarize current evidence of cardio-protection with inflammasome inhibitors in the context of heart disease in general, and further highlight the potential application of this evidence for clinical translation in at risk patients for the purpose of preventing cancer therapy associated cardiovascular morbidity and mortality.


Subject(s)
Inflammasomes , Neoplasms , Humans , NLR Family, Pyrin Domain-Containing 3 Protein , Cardiotoxicity/etiology , Inflammation , Neoplasms/complications , Neoplasms/drug therapy
17.
BMJ Open ; 12(10): e064748, 2022 10 05.
Article in English | MEDLINE | ID: mdl-36198461

ABSTRACT

INTRODUCTION: Long pulse width stimulation (LPWS; 120-150 ms) has the potential to stimulate denervated muscles and to restore muscle size in denervated people with spinal cord injury (SCI). We will determine if testosterone treatment (TT)+LPWS would increase skeletal muscle size, leg lean mass and improve overall metabolic health in persons with SCI with denervation. We hypothesise that the 1-year TT+LPWS will upregulate protein synthesis pathways, downregulate protein degradation pathways and increase overall mitochondrial health. METHODS AND ANALYSIS: Twenty-four male participants (aged 18-70 years with chronic SCI) with denervation of both knee extensor muscles and tolerance to the LPWS paradigm will be randomised into either TT+neuromuscular electrical stimulation via telehealth or TT+LPWS. The training sessions will be twice weekly for 1 year. Measurements will be conducted 1 week prior training (baseline; week 0), 6 months following training (postintervention 1) and 1 week after the end of 1 year of training (postintervention 2). Measurements will include body composition assessment using anthropometry, dual X-ray absorptiometry and MRI to measure size of different muscle groups. Metabolic profile will include measuring of basal metabolic rate, followed by blood drawn to measure fasting biomarkers similar to hemoglobin A1c, lipid panels, C reactive protein, interleukin-6 and free fatty acids and then intravenous glucose tolerance test to test for insulin sensitivity and glucose effectiveness. Finally, muscle biopsy will be captured to measure protein expression and intracellular signalling; and mitochondrial electron transport chain function. The participants will fill out 3 days dietary record to monitor their energy intake on a weekly basis. ETHICS AND DISSEMINATION: The study was approved by Institutional Review Board of the McGuire Research Institute (ID # 02189). Dissemination plans will include the Veteran Health Administration and its practitioners, the national SCI/D services office, the general healthcare community and the veteran population, as well as the entire SCI community via submitting quarterly letters or peer-review articles. TRIAL REGISTRATION NUMBER: NCT03345576.


Subject(s)
Spinal Cord Injuries , Testosterone , Biomarkers , C-Reactive Protein/metabolism , Fatty Acids, Nonesterified , Glucose/metabolism , Glycated Hemoglobin/metabolism , Humans , Interleukin-6/metabolism , Male , Muscle, Skeletal , Randomized Controlled Trials as Topic , Spinal Cord Injuries/therapy
18.
Life (Basel) ; 12(8)2022 Aug 09.
Article in English | MEDLINE | ID: mdl-36013387

ABSTRACT

BACKGROUND: Induction of acute ER (endoplasmic reticulum) stress using thapsigargin contributes to complex I damage in mouse hearts. Thapsigargin impairs complex I by increasing mitochondrial calcium through inhibition of Ca2+-ATPase in the ER. Tunicamycin (TUNI) is used to induce ER stress by inhibiting protein folding. We asked if TUNI-induced ER stress led to complex I damage. METHODS: TUNI (0.4 mg/kg) was used to induce ER stress in C57BL/6 mice. Cardiac mitochondria were isolated after 24 or 72 h following TUNI treatment for mitochondrial functional analysis. RESULTS: ER stress was only increased in mice following 72 h of TUNI treatment. TUNI treatment decreased oxidative phosphorylation with complex I substrates compared to vehicle with a decrease in complex I activity. The contents of complex I subunits including NBUPL and NDUFS7 were decreased in TUNI-treated mice. TUNI treatment activated both cytosolic and mitochondrial calpain 1. Our results indicate that TUNI-induced ER stress damages complex I through degradation of its subunits including NDUFS7. CONCLUSION: Induction of the ER stress using TUNI contributes to complex I damage by activating calpain 1.

19.
Biochem Biophys Res Commun ; 613: 127-132, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35550199

ABSTRACT

Activation of calpain1 (CPN1) contributes to mitochondrial dysfunction during cardiac ischemia (ISC) - reperfusion (REP). Blockade of electron transport using amobarbital (AMO) protects mitochondria during ISC-REP, indicating that the electron transport chain (ETC) is a key source of mitochondrial injury. We asked if AMO treatment can decrease CPN1 activation as a potential mechanism of mitochondrial protection during ISC-REP. Buffer-perfused adult rat hearts underwent 25 min global ISC and 30 min REP. AMO (2.5 mM) or vehicle was administered for 1 min before ISC to block electron flow in the ETC. Hearts in the time control group were untreated and buffer perfused without ISC. Hearts were collected at the end of perfusion and used for mitochondrial isolation. ISC-REP increased both the cleavage of spectrin (indicating cytosolic CPN1 activation) in cytosol and the truncation of AIF (apoptosis inducing factor, indicating mitochondrial CPN1 activation) in subsarcolemmal mitochondria compared to time control. Thus, ISC-REP activated both cytosolic and mitochondrial CPN1. AMO treatment prevented the cleavage of spectrin and AIF during ISC-REP, suggesting that the transient blockade of electron transport during ISC decreases CPN1 activation. AMO treatment decreased the activation of PARP [poly(ADP-ribose) polymerase] downstream of AIF that triggers caspase-independent apoptosis. AMO treatment also decreased the release of cytochrome c from mitochondria during ISC-REP that prevented caspase 3 activation. These results support that the damaged ETC activates CPN1 in cytosol and mitochondria during ISC-REP, likely via calcium overload and oxidative stress. Thus, AMO treatment to mitigate mitochondrial-driven cardiac injury can decrease both caspase-dependent and caspase-independent programmed cell death during ISC-REP.


Subject(s)
Mitochondria, Heart , Myocardial Reperfusion Injury , Animals , Calpain/metabolism , Caspases/metabolism , Electron Transport , Ischemia/metabolism , Mitochondria, Heart/metabolism , Myocardial Reperfusion Injury/metabolism , Rats , Reperfusion , Spectrin/metabolism
20.
J Cardiovasc Pharmacol ; 80(1): 148-157, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35579563

ABSTRACT

ABSTRACT: Donation after circulatory death (DCD) donors are a potential source for heart transplantation. The DCD process has unavoidable ischemia and reperfusion (I/R) injury, primarily mediated through mitochondria, which limits routine utilization of hearts for transplantation. Amobarbital (AMO), a transient inhibitor of the electron transport chain, is known to decrease cardiac injury following ex vivo I/R. We studied whether AMO treatment during reperfusion can decrease injury in DCD hearts. Sprague Dawley rat hearts subjected to 25 minutes of in vivo ischemia (DCD hearts), or control beating donor hearts, were treated with AMO or vehicle for the first 5 minutes of reperfusion, followed by Krebs-Henseleit buffer reperfusion for 55 minutes (for mitochondrial isolation) or 85 minutes (for infarct size determination). Compared with vehicle, AMO treatment led to decreased infarct size (25.2% ± 1.5% vs. 31.5% ± 1.5%; P ≤ 0.05) and troponin I release (4.5 ± 0.05 ng/mL vs. 9.3 ± 0.24 ng/mL, P ≤ 0.05). AMO treatment decreased H 2 O 2 generation with glutamate as complex I substrate in both subsarcolemmal mitochondria (SSM) (37 ± 3.7 pmol·mg -1 ·min -1 vs. 56.9 ± 4.1 pmol·mg -1 ·min -1 ; P ≤ 0.05), and interfibrillar mitochondria (IFM) (31.8 ± 2.8 pmol·mg -1 ·min -1 vs. 46 ± 4.8 pmol·mg -1 ·min -1 ; P ≤ 0.05) and improved calcium retention capacity in SSM (360 ±17.2 nmol/mg vs. 277 ± 13 nmol/mg; P ≤ 0.05), and IFM (483 ± 20 nmol/mg vs. 377± 19 nmol/mg; P ≤ 0.05) compared with vehicle treatment. SSM and IFM retained more cytochrome c with AMO treatment compared with vehicle. In conclusion, brief inhibition of mitochondrial respiration during reperfusion using amobarbital is a promising approach to decrease injury in DCD hearts.


Subject(s)
Heart Transplantation , Myocardial Reperfusion Injury , Reperfusion Injury , Amobarbital/metabolism , Animals , Electron Transport/physiology , Humans , Infarction/metabolism , Mitochondria, Heart/metabolism , Myocardial Reperfusion Injury/metabolism , Rats , Rats, Sprague-Dawley , Reperfusion , Reperfusion Injury/metabolism , Respiration , Tissue Donors
SELECTION OF CITATIONS
SEARCH DETAIL
...