Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nat Cancer ; 5(1): 131-146, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38168934

ABSTRACT

Availability of the essential amino acid methionine affects cellular metabolism and growth, and dietary methionine restriction has been implicated as a cancer therapeutic strategy. Nevertheless, how liver cancer cells respond to methionine deprivation and underlying mechanisms remain unclear. Here we find that human liver cancer cells undergo irreversible cell cycle arrest upon methionine deprivation in vitro. Blocking methionine adenosyl transferase 2A (MAT2A)-dependent methionine catabolism induces cell cycle arrest and DNA damage in liver cancer cells, resulting in cellular senescence. A pharmacological screen further identified GSK3 inhibitors as senolytics that selectively kill MAT2A-inhibited senescent liver cancer cells. Importantly, combined treatment with MAT2A and GSK3 inhibitors therapeutically blunts liver tumor growth in vitro and in vivo across multiple models. Together, methionine catabolism is essential for liver tumor growth, and its inhibition can be exploited as an improved pro-senescence strategy for combination with senolytic agents to treat liver cancer.


Subject(s)
Glycogen Synthase Kinase 3 , Liver Neoplasms , Humans , S-Adenosylmethionine/metabolism , S-Adenosylmethionine/pharmacology , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Methionine/pharmacology , Methionine Adenosyltransferase/metabolism
2.
Article in English | MEDLINE | ID: mdl-37848248

ABSTRACT

Molecular oxygen (O2) is essential for cellular bioenergetics and numerous biochemical reactions necessary for life. Solid tumors outgrow the native blood supply and diffusion limits of O2, and therefore must engage hypoxia response pathways that evolved to withstand acute periods of low O2 Hypoxia activates coordinated gene expression programs, primarily through hypoxia inducible factors (HIFs), to support survival. Many of these changes involve metabolic rewiring such as increasing glycolysis to support ATP generation while suppressing mitochondrial metabolism. Since low O2 is often coupled with nutrient stress in the tumor microenvironment, other responses to hypoxia include activation of nutrient uptake pathways, metabolite scavenging, and regulation of stress and growth signaling cascades. Continued development of models that better recapitulate tumors and their microenvironments will lead to greater understanding of oxygen-dependent metabolic reprogramming and lead to more effective cancer therapies.


Subject(s)
Energy Metabolism , Neoplasms , Humans , Hypoxia/metabolism , Oxygen/metabolism , Neoplasms/pathology , Signal Transduction , Tumor Microenvironment
3.
EMBO J ; 42(6): e112067, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36808622

ABSTRACT

A role for hypoxia-inducible factors (HIFs) in hypoxia-dependent regulation of tumor cell metabolism has been thoroughly investigated and covered in reviews. However, there is limited information available regarding HIF-dependent regulation of nutrient fates in tumor and stromal cells. Tumor and stromal cells may generate nutrients necessary for function (metabolic symbiosis) or deplete nutrients resulting in possible competition between tumor cells and immune cells, a result of altered nutrient fates. HIF and nutrients in the tumor microenvironment (TME) affect stromal and immune cell metabolism in addition to intrinsic tumor cell metabolism. HIF-dependent metabolic regulation will inevitably result in the accumulation or depletion of essential metabolites in the TME. In response, various cell types in the TME will respond to these hypoxia-dependent alterations by activating HIF-dependent transcription to alter nutrient import, export, and utilization. In recent years, the concept of metabolic competition has been proposed for critical substrates, including glucose, lactate, glutamine, arginine, and tryptophan. In this review, we discuss how HIF-mediated mechanisms control nutrient sensing and availability in the TME, the competition for nutrients, and the metabolic cross-talk between tumor and stromal cells.


Subject(s)
Neoplasms , Tumor Microenvironment , Humans , Hypoxia/metabolism , Neoplasms/metabolism , Cell Hypoxia , Nutrients , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
4.
bioRxiv ; 2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36798172

ABSTRACT

Most kidney cancers display evidence of metabolic dysfunction1-4 but how this relates to cancer progression in humans is unknown. We used a multidisciplinary approach to infuse 13C-labeled nutrients during surgical tumour resection in over 70 patients with kidney cancer. Labeling from [U-13C]glucose varies across cancer subtypes, indicating that the kidney environment alone cannot account for all metabolic reprogramming in these tumours. Compared to the adjacent kidney, clear cell renal cell carcinomas (ccRCC) display suppressed labelling of tricarboxylic acid (TCA) cycle intermediates in vivo and in organotypic slices cultured ex vivo, indicating that suppressed labeling is tissue intrinsic. Infusions of [1,2-13C]acetate and [U-13C]glutamine in patients, coupled with respiratory flux of mitochondria isolated from kidney and tumour tissue, reveal primary defects in mitochondrial function in human ccRCC. However, ccRCC metastases unexpectedly have enhanced labeling of TCA cycle intermediates compared to primary ccRCCs, indicating a divergent metabolic program during ccRCC metastasis in patients. In mice, stimulating respiration in ccRCC cells is sufficient to promote metastatic colonization. Altogether, these findings indicate that metabolic properties evolve during human kidney cancer progression, and suggest that mitochondrial respiration may be limiting for ccRCC metastasis but not for ccRCC growth at the site of origin.

5.
Sci Adv ; 9(1): eadd3216, 2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36598990

ABSTRACT

Myopathies secondary to mitochondrial electron transport chain (ETC) dysfunction can result in devastating disease. While the consequences of ETC defects have been extensively studied in culture, little in vivo data are available. Using a mouse model of severe, early-onset mitochondrial myopathy, we characterized the proteomic, transcriptomic, and metabolic characteristics of disease progression. Unexpectedly, ETC dysfunction in muscle results in reduced expression of glycolytic enzymes in our animal model and patient muscle biopsies. The decrease in glycolysis was mediated by loss of constitutive Hif1α signaling, down-regulation of the purine nucleotide cycle enzyme AMPD1, and activation of AMPK. In vivo isotope tracing experiments indicated that myopathic muscle relies on lactate import to supply central carbon metabolites. Inhibition of lactate import reduced steady-state levels of tricarboxylic acid cycle intermediates and compromised the life span of myopathic mice. These data indicate an unexpected mode of metabolic reprogramming in severe mitochondrial myopathy that regulates disease progression.

6.
J Clin Invest ; 132(23)2022 12 01.
Article in English | MEDLINE | ID: mdl-36282599

ABSTRACT

Multiple genetic loci have been reported for progeroid syndromes. However, the molecular defects in some extremely rare forms of progeria have yet to be elucidated. Here, we report a 21-year-old man of Chinese ancestry who has an autosomal recessive form of progeria, characterized by severe dwarfism, mandibular hypoplasia, hyperopia, and partial lipodystrophy. Analyses of exome sequencing data from the entire family revealed only 1 rare homozygous missense variant (c.86C>T; p.Pro29Leu) in TOMM7 in the proband, while the parents and 2 unaffected siblings were heterozygous for the variant. TOMM7, a nuclear gene, encodes a translocase in the outer mitochondrial membrane. The TOMM complex makes up the outer membrane pore, which is responsible for importing many preproteins into the mitochondria. A proteomic comparison of mitochondria from control and proband-derived cultured fibroblasts revealed an increase in abundance of several proteins involved in oxidative phosphorylation, as well as a reduction in abundance of proteins involved in phospholipid metabolism. We also observed elevated basal and maximal oxygen consumption rates in the fibroblasts from the proband as compared with control fibroblasts. We concluded that altered mitochondrial protein import due to biallelic loss-of-function TOMM7 can cause severe growth retardation and progeroid features.


Subject(s)
Lipodystrophy , Progeria , Humans , Young Adult , Adult , Progeria/genetics , Proteomics , Lipodystrophy/genetics , Homozygote , Exome , Mutation , Membrane Proteins/genetics , Mitochondrial Proteins/genetics
7.
Elife ; 112022 Sep 26.
Article in English | MEDLINE | ID: mdl-36154948

ABSTRACT

Mitochondrial electron transport chain (ETC) dysfunction due to mutations in the nuclear or mitochondrial genome is a common cause of metabolic disease in humans and displays striking tissue specificity depending on the affected gene. The mechanisms underlying tissue-specific phenotypes are not understood. Complex I (cI) is classically considered the entry point for electrons into the ETC, and in vitro experiments indicate that cI is required for basal respiration and maintenance of the NAD+/NADH ratio, an indicator of cellular redox status. This finding has largely not been tested in vivo. Here, we report that mitochondrial complex I is dispensable for homeostasis of the adult mouse liver; animals with hepatocyte-specific loss of cI function display no overt phenotypes or signs of liver damage, and maintain liver function, redox and oxygen status. Further analysis of cI-deficient livers did not reveal significant proteomic or metabolic changes, indicating little to no compensation is required in the setting of complex I loss. In contrast, complex IV (cIV) dysfunction in adult hepatocytes results in decreased liver function, impaired oxygen handling, steatosis, and liver damage, accompanied by significant metabolomic and proteomic perturbations. Our results support a model whereby complex I loss is tolerated in the mouse liver because hepatocytes use alternative electron donors to fuel the mitochondrial ETC.


Mitochondria are specialised structures inside cells that help to convert nutrients into energy. They take electrons from nutrients and use them to power biochemical reactions that supply chemical fuel. Previous studies of cells grown in the laboratory have found that electrons enter this process via a large assembly of proteins in mitochondria called complex I. Understanding the mechanism of energy production is important, as issues with mitochondria can lead to a variety of metabolic diseases. However, it is still unclear how complex I acts in living animals. Lesner et al. addressed this knowledge gap by genetically removing a key protein from complex I in the liver of mice. Surprisingly, the animals did not develop any detectable symptoms and maintained healthy liver function. Mice did not seem to compensate by making energy in a different way, suggesting that complex I is not normally used by the mouse liver for this process. This research suggests that biologists should reconsider the mechanism that mitochondria use to power cells in animals. While the role of Complex I in electron transfer is well established in laboratory-grown cells and some organs, like the brain, it cannot be assumed this applies to the whole body. Understanding energy production in specific organs could help researchers to develop nutrient-based therapies for metabolic diseases.


Subject(s)
Electron Transport Complex I , Proteomics , Animals , Mice , Electron Transport , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Liver/metabolism , Oxygen/metabolism
8.
J Clin Invest ; 132(23)2022 12 01.
Article in English | MEDLINE | ID: mdl-36125902

ABSTRACT

A fundamental issue in regenerative medicine is whether there exist endogenous regulatory mechanisms that limit the speed and efficiency of the repair process. We report the existence of a maturation checkpoint during muscle regeneration that pauses myofibers at a neonatal stage. This checkpoint is regulated by the mitochondrial protein mitofusin 2 (Mfn2), the expression of which is activated in response to muscle injury. Mfn2 is required for growth and maturation of regenerating myofibers; in the absence of Mfn2, new myofibers arrested at a neonatal stage, characterized by centrally nucleated myofibers and loss of H3K27me3 repressive marks at the neonatal myosin heavy chain gene. A similar arrest at the neonatal stage was observed in infantile cases of human centronuclear myopathy. Mechanistically, Mfn2 upregulation suppressed expression of hypoxia-induced factor 1α (HIF1α), which is induced in the setting of muscle damage. Sustained HIF1α signaling blocked maturation of new myofibers at the neonatal-to-adult fate transition, revealing the existence of a checkpoint that delays muscle regeneration. Correspondingly, inhibition of HIF1α allowed myofibers to bypass the checkpoint, thereby accelerating the repair process. We conclude that skeletal muscle contains a regenerative checkpoint that regulates the speed of myofiber maturation in response to Mfn2 and HIF1α activity.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit , Mitochondrial Proteins , Muscle, Skeletal , Regeneration , Humans , Infant, Newborn , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Myosin Heavy Chains , Signal Transduction , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mitochondrial Proteins/metabolism
9.
Trends Cancer ; 8(12): 988-1001, 2022 12.
Article in English | MEDLINE | ID: mdl-35909026

ABSTRACT

Metastasis is responsible for 90% of deaths in patients with cancer. Understanding the role of metabolism during metastasis has been limited by the development of robust and sensitive technologies that capture metabolic processes in metastasizing cancer cells. We discuss the current technologies available to study (i) metabolism in primary and metastatic cancer cells and (ii) metabolic interactions between cancer cells and the tumor microenvironment (TME) at different stages of the metastatic cascade. We identify advantages and disadvantages of each method and discuss how these tools and technologies will further improve our understanding of metastasis. Studies investigating the complex metabolic rewiring of different cells using state-of-the-art metabolomic technologies have the potential to reveal novel biological processes and therapeutic interventions for human cancers.


Subject(s)
Metabolomics , Neoplasms , Humans , Metabolomics/methods , Tumor Microenvironment , Neoplasms/pathology
10.
Metab Eng ; 60: 157-167, 2020 07.
Article in English | MEDLINE | ID: mdl-32330654

ABSTRACT

Pathogenic mutations in the mitochondrial genome (mtDNA) impair organellar ATP production, requiring mutant cells to activate metabolic adaptations for survival. Understanding how metabolism adapts to clinically relevant mtDNA mutations may provide insight into cellular strategies for metabolic flexibility. In this study, we use 13C isotope tracing and metabolic flux analysis to investigate central carbon and amino acid metabolic reprogramming in isogenic cells containing mtDNA mutations. We identify alterations in glutamine and cystine transport which indirectly regulate mitochondrial metabolism and electron transport chain function. Metabolism of cystine can promote glucose oxidation through the transsulfuration pathway and the production of α-ketobutyrate. Intriguingly, activating or inhibiting α-ketobutyrate production is sufficient to modulate both glucose oxidation and mitochondrial respiration in mtDNA mutant cells. Thus, cystine-stimulated transsulfuration serves as an adaptive mechanism linking glucose oxidation and amino acid metabolism in the setting of mtDNA mutations.


Subject(s)
Butyrates/metabolism , Cystine/metabolism , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Glucose/metabolism , Amino Acids/metabolism , Carbon Isotopes , Cell Line , Glutamine/metabolism , Humans , Mutation/genetics , NAD/metabolism , Oxidation-Reduction , Oxygen Consumption
11.
Genes Dev ; 33(17-18): 1236-1251, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31416966

ABSTRACT

Tumors display increased uptake and processing of nutrients to fulfill the demands of rapidly proliferating cancer cells. Seminal studies have shown that the proto-oncogene MYC promotes metabolic reprogramming by altering glutamine uptake and metabolism in cancer cells. How MYC regulates the metabolism of other amino acids in cancer is not fully understood. Using high-performance liquid chromatography (HPLC)-tandem mass spectrometry (LC-MS/MS), we found that MYC increased intracellular levels of tryptophan and tryptophan metabolites in the kynurenine pathway. MYC induced the expression of the tryptophan transporters SLC7A5 and SLC1A5 and the enzyme arylformamidase (AFMID), involved in the conversion of tryptophan into kynurenine. SLC7A5, SLC1A5, and AFMID were elevated in colon cancer cells and tissues, and kynurenine was significantly greater in tumor samples than in the respective adjacent normal tissue from patients with colon cancer. Compared with normal human colonic epithelial cells, colon cancer cells were more sensitive to the depletion of tryptophan. Blocking enzymes in the kynurenine pathway caused preferential death of established colon cancer cells and transformed colonic organoids. We found that only kynurenine and no other tryptophan metabolite promotes the nuclear translocation of the transcription factor aryl hydrocarbon receptor (AHR). Blocking the interaction between AHR and kynurenine with CH223191 reduced the proliferation of colon cancer cells. Therefore, we propose that limiting cellular kynurenine or its downstream targets could present a new strategy to reduce the proliferation of MYC-dependent cancer cells.


Subject(s)
Colonic Neoplasms/physiopathology , Kynurenine/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Tryptophan/metabolism , Amino Acid Transport System ASC/genetics , Antineoplastic Agents/pharmacology , Arylformamidase/genetics , Cell Line , Cell Line, Tumor , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic , Humans , Indoles/pharmacology , Kynurenine/genetics , Large Neutral Amino Acid-Transporter 1/genetics , Minor Histocompatibility Antigens/genetics , Oximes/pharmacology , Proto-Oncogene Mas , Sulfonamides/pharmacology
12.
RNA ; 21(10): 1746-56, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26221047

ABSTRACT

A codon-optimized recombinant ribonuclease, MC1 is characterized for its uridine-specific cleavage ability to map nucleoside modifications in RNA. The published MC1 amino acid sequence, as noted in a previous study, was used as a template to construct a synthetic gene with a natural codon bias favoring expression in Escherichia coli. Following optimization of various expression conditions, the active recombinant ribonuclease was successfully purified as a C-terminal His-tag fusion protein from E. coli [Rosetta 2(DE3)] cells. The isolated protein was tested for its ribonuclease activity against oligoribonucleotides and commercially available E. coli tRNA(Tyr I). Analysis of MC1 digestion products by ion-pairing reverse phase liquid-chromatography coupled with mass spectrometry (IP-RP-LC-MS) revealed enzymatic cleavage of RNA at the 5'-termini of uridine and pseudouridine, but cleavage was absent if the uridine was chemically modified or preceded by a nucleoside with a bulky modification. Furthermore, the utility of this enzyme to generate complementary digestion products to other common endonucleases, such as RNase T1, which enables the unambiguous mapping of modified residues in RNA is demonstrated.


Subject(s)
Momordica charantia/enzymology , RNA, Plant/metabolism , Ribonucleases/metabolism , Uridine/metabolism , Chromatography, Liquid , Molecular Sequence Data , RNA Processing, Post-Transcriptional , RNA, Plant/chemistry , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...