Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Pathogens ; 9(11)2020 Oct 22.
Article in English | MEDLINE | ID: mdl-33105606

ABSTRACT

The West Bank can be considered a high-risk area for Legionnaires' disease (LD) due to its hot climate, intermittent water supply and roof storage of drinking water. Legionella, mostly L. pneumophila, are responsible for LD, a severe, community-acquired and nosocomial pneumonia. To date, no extensive assessment of Legionella spp and L. pneumophila using cultivation in combination with molecular approaches in the West Bank has been published. Two years of environmental surveillance of Legionella in water and biofilms in the drinking water distribution systems (DWDS) of eight hospitals was carried out; 180 L. pneumophila strains were isolated, mostly from biofilms in DWDS. Most of the isolates were identified as serogroup (Sg) 1 (60%) and 6 (30%), while a minor fraction comprised Sg 8 and 10. Multilocus Variable number of tandem repeats Analysis using 13 loci (MLVA-8(12)) was applied as a high-resolution genotyping method and compared to the standard Sequence Based Typing (SBT). The isolates were genotyped in 27 MLVA-8(12) genotypes (Gt), comprising four MLVA clonal complexes (VACC 1; 2; 5; 11). The major fraction of isolates constituted Sequence Type (ST)1 and ST461. Most of the MLVA-genotypes were highly diverse and often unique. The MLVA-genotype composition showed substantial regional variability. In general, the applied MLVA-method made it possible to reproducibly genotype the isolates, and was consistent with SBT but showed a higher resolution. The advantage of the higher resolution was most evident for the subdivision of the large strain sets of ST1 and ST461; these STs were shown to be highly pneumonia-relevant in a former study. This shows that the resolution by MLVA is advantageous for back-tracking risk sites and for the avoidance of outbreaks of L. pneumophila. Overall, our results provide important insights into the detailed population structure of L. pneumophila, allowing for better risk assessment for DWDS.

2.
Sci Rep ; 7: 40114, 2017 01 06.
Article in English | MEDLINE | ID: mdl-28059171

ABSTRACT

Bacteria of the genus Legionella cause water-based infections resulting in severe pneumonia. Here we analyze and compare the bacterial microbiome of sputum samples from pneumonia patients in relation to the presence and abundance of the genus Legionella. The prevalence of Legionella species was determined by culture, PCR, and Next Generation Sequencing (NGS). Nine sputum samples out of the 133 analyzed were PCR-positive using Legionella genus-specific primers. Only one sample was positive by culture. Illumina MiSeq 16S rRNA gene sequencing analyses of Legionella-positive and Legionella-negative sputum samples, confirmed that indeed, Legionella was present in the PCR-positive sputum samples. This approach allowed the identification of the sputum microbiome at the genus level, and for Legionella genus at the species and sub-species level. 42% of the sputum samples were dominated by Streptococcus. Legionella was never the dominating genus and was always accompanied by other respiratory pathogens. Interestingly, sputum samples that were Legionella positive were inhabited by aquatic bacteria that have been observed in an association with amoeba, indicating that amoeba might have transferred Legionella from the drinking water together with its microbiome. This is the first study that demonstrates the sputum major bacterial commensals and pathogens profiles with regard to Legionella presence.


Subject(s)
Legionella/isolation & purification , Legionellosis/microbiology , Microbiota , Pneumonia/microbiology , Sputum/microbiology , Aged , Female , Humans , Legionella/genetics , Legionella pneumophila/genetics , Legionella pneumophila/isolation & purification , Legionellosis/complications , Male , Middle Aged , Pneumonia/complications
3.
ISME J ; 10(5): 1064-80, 2016 May.
Article in English | MEDLINE | ID: mdl-26528838

ABSTRACT

Water samples of the Drinking Water Supply System (DWSS) of the city of Braunschweig were analysed for its Legionella species composition using genus-specific PCR amplicons and single-strand conformation polymorphism (SSCP) fingerprint analyses based on 16S rRNA genes. These analyses comprised the whole supply chain including raw water, treatment process and large-scale storage, and a seasonal study of finished drinking water sampled monthly from cold and hot tap water. Treatment of raw water had a major impact on Legionella species by reducing their diversity and abundances. The Legionella species composition of the tap water was highly distinct from that of both source waters. In cold water, 8-14 different phylotypes of Legionella (PTLs) were observed per sample with relative abundances ranging from >1% to 53%. In hot water, L. pneumophila was present during all seasons at high relative abundances (8-40%) accompanied by 5-14 other PTLs of which 6 PTLs were in common with cold water. This thermophilic Legionella community, including L. pneumophila, was able to grow in the hot water above 50 °C. Such thermophilic Legionella populations are of general relevance for drinking water management and public health, but also for the ecology and evolution of the genus Legionella.


Subject(s)
Drinking Water/microbiology , Legionella/classification , Legionella/isolation & purification , Water Supply , Bacterial Load , Cities , Cold Temperature , DNA Fingerprinting , Germany , Legionella/physiology , Legionella pneumophila/isolation & purification , Polymerase Chain Reaction , Polymorphism, Single-Stranded Conformational , RNA, Ribosomal, 16S/genetics , Seasons , Water Purification
4.
PLoS One ; 7(8): e43106, 2012.
Article in English | MEDLINE | ID: mdl-22905211

ABSTRACT

In recent years novel human respiratory disease agents have been described in South East Asia and Australia. The causative pathogens were classified as pteropine orthoreoviruses with strong phylogenetic relationship to orthoreoviruses of flying foxes inhabiting these regions. Subsequently, a zoonotic bat-to-human transmission has been assumed. We report the isolation of three novel mammalian orthoreoviruses (MRVs) from European bats, comprising bat-borne orthoreovirus outside of South East Asia and Australia and moreover detected in insectivorous bats (Microchiroptera). MRVs are well known to infect a broad range of mammals including man. Although they are associated with rather mild and clinically unapparent infections in their hosts, there is growing evidence of their ability to also induce more severe illness in dogs and man. In this study, eight out of 120 vespertilionid bats proved to be infected with one out of three novel MRV isolates, with a distinct organ tropism for the intestine. One isolate was analyzed by 454 genome sequencing. The obtained strain T3/Bat/Germany/342/08 had closest phylogenetic relationship to MRV strain T3D/04, isolated from a dog. These novel reoviruses provide a rare chance of gaining insight into possible transmission events and of tracing the evolution of bat viruses.


Subject(s)
Orthoreovirus, Mammalian/genetics , Orthoreovirus, Mammalian/isolation & purification , Respiratory Tract Infections/virology , Amino Acid Sequence , Animals , Chiroptera , Chlorocebus aethiops , DNA, Viral/metabolism , Dogs , Genome, Viral , Humans , Molecular Sequence Data , Orthoreovirus, Mammalian/classification , Phylogeny , Polymerase Chain Reaction/methods , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Vero Cells
5.
PLoS One ; 6(12): e29773, 2011.
Article in English | MEDLINE | ID: mdl-22216354

ABSTRACT

BACKGROUND: Bats receive increasing attention in infectious disease studies, because of their well recognized status as reservoir species for various infectious agents. This is even more important, as bats with their capability of long distance dispersal and complex social structures are unique in the way microbes could be spread by these mammalian species. Nevertheless, infection studies in bats are predominantly limited to the identification of specific pathogens presenting a potential health threat to humans. But the impact of infectious agents on the individual host and their importance on bat mortality is largely unknown and has been neglected in most studies published to date. METHODOLOGY/PRINCIPAL FINDINGS: Between 2002 and 2009, 486 deceased bats of 19 European species (family Vespertilionidae) were collected in different geographic regions in Germany. Most animals represented individual cases that have been incidentally found close to roosting sites or near human habitation in urban and urban-like environments. The bat carcasses were subjected to a post-mortem examination and investigated histo-pathologically, bacteriologically and virologically. Trauma and disease represented the most important causes of death in these bats. Comparative analysis of pathological findings and microbiological results show that microbial agents indeed have an impact on bats succumbing to infectious diseases, with fatal bacterial, viral and parasitic infections found in at least 12% of the bats investigated. CONCLUSIONS/SIGNIFICANCE: Our data demonstrate the importance of diseases and infectious agents as cause of death in European bat species. The clear seasonal and individual variations in disease prevalence and infection rates indicate that maternity colonies are more susceptible to infectious agents, underlining the possible important role of host physiology, immunity and roosting behavior as risk factors for infection of bats.


Subject(s)
Animal Diseases/epidemiology , Cause of Death , Chiroptera , Disease Susceptibility , Animal Diseases/mortality , Animal Diseases/virology , Animals , Base Sequence , DNA Primers , Germany
SELECTION OF CITATIONS
SEARCH DETAIL
...