Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(12)2022 Jun 19.
Article in English | MEDLINE | ID: mdl-35745049

ABSTRACT

The potential for enhancing the spring wheat protein content by different cultivation strategies was explored. The influence of ultrasound on the surface and rheological properties of wheat-gluten was also studied. Spring wheat was cultivated over the period of 2018-2020 using two farming systems (conventional and organic) and five forecrops (sugar beet, spring barley, red clover, winter wheat, or oat). The obtained gluten was sonicated using the ultrasonic scrubber. For all organically grown wheat, the protein content was higher than for the conventional one. There was no correlation between the rheological properties of gluten and the protein content in the grain. Gluten derived from organically grown wheat was more elastic than those derived from the conventional one. Sonication enhanced the elasticity of gluten. The sonication effect was influenced by the forecrops. The most elastic gluten after sonication was found for organic barley and sugar beet. The lowest values of tan (delta) were noted for conventional wheat and conventional oat. Cultivation in the monoculture gave gluten with a smaller susceptibility to increase elasticity after sonic treatment. Sonication promoted the cross-linking of protein molecules and induced a more hydrophobic character, which was confirmed by an increment in contact angles (CAs). Most of the organically grown wheat samples showed a lower CA than the conventional ones, which indicated a less hydrophobic character. The gluten surface became rougher with the sonication, regardless of the farming system and applied forecrops. Sonication treatment of gluten proteins rearranged the intermolecular linkages, especially disulfide and hydrophobic bonds, leading to changes in their surface morphology.


Subject(s)
Glutens , Hordeum , Agriculture , Edible Grain/metabolism , Glutens/chemistry , Hordeum/metabolism , Sugars/metabolism , Triticum/chemistry
2.
Plant Dis ; 105(2): 251-254, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33297718

ABSTRACT

Zymoseptoria tritici is a fungal pathogen causing losses in wheat yields. Here, we present new primer sets for species-specific identification of this microorganism in wheat leaf samples using conventional PCR. Primer sets were validated in silico using tools available in genetic databases. Furthermore, in vitro tests were also carried out on 190 common wheat samples with visual symptoms of Septoria tritici blotch (STB) collected in Poland in three growing seasons (2015, 2016, 2017). The designed primer sets showed full hybridization to the available genetic resources deposited in the NCBI GenBank database, and their high specificity and sensitivity were demonstrated on wheat leaf samples and selected fungal strains.


Subject(s)
Ascomycota , Triticum , Ascomycota/genetics , Plant Diseases , Poland
3.
Theor Appl Genet ; 133(1): 179-185, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31570968

ABSTRACT

The appropriate selection of various traits in valuable plants is very important for modern plant breeding. Effective resistance to fungal diseases, such as powdery mildew, is an example of such a trait in oats. Marker-assisted selection is an important tool that reduces the time and cost of selection. The aims of the present study were the identification of dominant DArTseq markers associated with a new resistance gene, annotated as Pm11 and derived from Avena sterilis genotype CN113536, and the subsequent conversion of these markers into a PCR-based assay. Among the obtained 30,620 silicoDArT markers, 202 markers were highly associated with resistance in the analysed population. Of these, 71 were selected for potential conversion: 42 specific to resistant and 29 to susceptible individuals. Finally, 40 silicoDArT markers were suitable for primer design. From this pool, five markers, 3 for resistant and 2 for susceptible plants, were selected for product amplification in the expected groups. The developed method, based on 2 selection markers, provides certain identification of resistant and susceptible homozygotes. Also, the use of these markers allowed the determination of heterozygotes in the analysed population. Selected silicoDArT markers were also used for chromosomal localization of new resistance genes. Five out of 71 segregating silicoDArT markers for the Pm11 gene were found on the available consensus genetic map of oat. Five markers were placed on linkage groups corresponding to Mrg12 on the Avena sativa consensus map.


Subject(s)
Ascomycota/physiology , Avena/genetics , Avena/microbiology , Chromosomes, Plant/genetics , Disease Resistance/genetics , Genes, Plant , Plant Diseases/genetics , Plant Diseases/microbiology , Chromosome Segregation/genetics , Crosses, Genetic , Genetic Markers , Reproducibility of Results , Seedlings/genetics , Seedlings/microbiology
4.
Physiol Mol Biol Plants ; 25(6): 1377-1384, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31736541

ABSTRACT

The use of pedunculate oak (Quercus robur L.), along with other tree species, for the afforestation of heavy metal contaminated lands is an attractive prospect. Little, however, is known of Q. robur tolerance and its antioxidative system response to heavy metal exposure. The main objective of the study was to determine the cadmium-induced changes in antioxidative system of pedunculate oak in an attempt to identify molecular mechanisms underlying Cd tolerance. This may be of great importance in respect of using Q. robur for phytoremediation purposes. As the response of the antioxidative system to heavy metal contamination can vary within species, the research was conducted on oak seedlings from two different regions of origin. Differences in antioxidative system response of seedlings derived from tested regions of origin were noticed both at the transcript and enzyme activity levels. The obtained results indicate that ascorbate peroxidase (APX; EC 1.11.1.11) and superoxide dismutase (SOD; EC 1.15.1.1) play a first barrier role in oak seedlings response to the oxidative stress caused by Cd exposure. Catalase (CAT; EC 1.11.1.6) is involved in reducing the negative effects of prolonged Cd treatment.

5.
PLoS One ; 14(8): e0221849, 2019.
Article in English | MEDLINE | ID: mdl-31465430

ABSTRACT

Water deficit induces reactive oxygen species (ROS) overproduction, which in turn inhibits plant growth and development. High concentrations of ROS disrupt the osmotic balance in plant cells and alter membrane integrity. Chromosomes carrying structural or regulatory genes must be detected to better understand plant response mechanisms to stress. The aim of our study was to identify Triticum aestivum L. chromosomes involved in early responses to short-term water-deficit stress (1, 3 and 6 h). In the present study, intervarietal substitution lines of drought-tolerant 'Saratovskaya 29' and sensitive 'Janetzkis Probat' wheat cultivars were examined. We studied the biochemical plant response system and conducted an analysis of catalase, ascorbate peroxidase and guaiacol peroxidase activities, levels of lipid peroxidation and changes in relative water content. Our results determined that the first reaction was a significant increase in guaiacol peroxidase (GPX) activity. However, the strongest impact on plant responses was found for catalase (CAT), which caused a significant decrease in lipid peroxidation (LPO) levels. Our findings indicate that chromosomes 5A, 4B, 6B and 7D are associated with early responses to short-term osmotic stress in wheat.


Subject(s)
Chromosome Mapping , Chromosomes, Plant , Droughts , Genetic Association Studies , Stress, Physiological , Triticum/physiology , Antioxidants/metabolism , Gene Expression Regulation, Enzymologic , Lipid Peroxidation , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...