Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 15120, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37704679

ABSTRACT

Iron-sulfur (Fe-S) proteins are essential for the ability of methanogens to carry out methanogenesis and biological nitrogen fixation (diazotrophy). Nonetheless, the factors involved in Fe-S cluster biogenesis in methanogens remain largely unknown. The minimal SUF Fe-S cluster biogenesis system (i.e., SufBC) is postulated to serve as the primary system in methanogens. Here, the role of SufBC in Methanosarcina acetivorans, which contains two sufCB gene clusters, was investigated. The CRISPRi-dCas9 and CRISPR-Cas9 systems were utilized to repress or delete sufC1B1 and sufC2B2, respectively. Neither the dual repression of sufC1B1 and sufC2B2 nor the deletion of both sufC1B1 and sufC2B2 affected the growth of M. acetivorans under any conditions tested, including diazotrophy. Interestingly, deletion of only sufC1B1 led to a delayed-growth phenotype under all growth conditions, suggesting that the deletion of sufC2B2 acts as a suppressor mutation in the absence of sufC1B1. In addition, the deletion of sufC1B1 and/or sufC2B2 did not affect the total Fe-S cluster content in M. acetivorans cells. Overall, these results reveal that the minimal SUF system is not required for Fe-S cluster biogenesis in M. acetivorans and challenge the universal role of SufBC in Fe-S cluster biogenesis in methanogens.


Subject(s)
Growth Disorders , Iron , Humans , M Cells , Methanosarcina/genetics , Multigene Family
2.
Appl Environ Microbiol ; 89(9): e0103323, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37695043

ABSTRACT

All nitrogen-fixing bacteria and archaea (diazotrophs) use molybdenum (Mo) nitrogenase to reduce dinitrogen (N2) to ammonia, with some also containing vanadium (V) and iron-only (Fe) nitrogenases that lack Mo. Among diazotrophs, the regulation and usage of the alternative V-nitrogenase and Fe-nitrogenase in methanogens are largely unknown. Methanosarcina acetivorans contains nif, vnf, and anf gene clusters encoding putative Mo-nitrogenase, V-nitrogenase, and Fe-nitrogenase, respectively. This study investigated nitrogenase expression and growth by M. acetivorans in response to fixed nitrogen, Mo/V availability, and CRISPRi repression of the nif, vnf, and/or anf gene clusters. The availability of Mo and V significantly affected growth of M. acetivorans with N2 but not with NH4Cl. M. acetivorans exhibited the fastest growth rate and highest cell yield during growth with N2 in medium containing Mo, and the slowest growth in medium lacking Mo and V. qPCR analysis revealed the transcription of the nif operon is only moderately affected by depletion of fixed nitrogen and Mo, whereas vnf and anf transcription increased significantly when fixed nitrogen and Mo were depleted, with removal of Mo being key. Immunoblot analysis revealed Mo-nitrogenase is detected when fixed nitrogen is depleted regardless of Mo availability, while V-nitrogenase and Fe-nitrogenase are detected only in the absence of fixed nitrogen and Mo. CRISPRi repression studies revealed that V-nitrogenase and/or Fe-nitrogenase are required for Mo-independent diazotrophy, and unexpectedly that the expression of Mo-nitrogenase is also required. These results reveal that alternative nitrogenase production in M. acetivorans is tightly controlled and dependent on Mo-nitrogenase expression. IMPORTANCE Methanogens and closely related methanotrophs are the only archaea known or predicted to possess nitrogenase. Methanogens play critical roles in both the global biological nitrogen and carbon cycles. Moreover, methanogens are an ancient microbial lineage and nitrogenase likely originated in methanogens. An understanding of the usage and properties of nitrogenases in methanogens can provide new insight into the evolution of nitrogen fixation and aid in the development nitrogenase-based biotechnology. This study provides the first evidence that a methanogen can produce all three forms of nitrogenases, including simultaneously. The results reveal components of Mo-nitrogenase regulate or are needed to produce V-nitrogenase and Fe-nitrogenase in methanogens, a result not seen in bacteria. Overall, this study provides a foundation to understand the assembly, regulation, and activity of the alternative nitrogenases in methanogens.


Subject(s)
Molybdenum , Nitrogenase , Nitrogenase/genetics , Nitrogenase/metabolism , Molybdenum/metabolism , Methanosarcina/genetics , Methanosarcina/metabolism , Nitrogen/metabolism , Nitrogen Fixation/genetics , Archaea/metabolism
4.
BMC Microbiol ; 20(1): 323, 2020 10 23.
Article in English | MEDLINE | ID: mdl-33096982

ABSTRACT

BACKGROUND: The production of methane by methanogens is dependent on numerous iron-sulfur (Fe-S) cluster proteins; yet, the machinery involved in Fe-S cluster biogenesis in methanogens remains largely unknown. Methanogen genomes encode uncharacterized homologs of the core components of the ISC (IscS and IscU) and SUF (SufBC) Fe-S cluster biogenesis systems found in bacteria and eukaryotes. Methanosarcina acetivorans contains three iscSU and two sufCB gene clusters. Here, we report genetic and biochemical characterization of M. acetivorans iscSU2. RESULTS: Purified IscS2 exhibited pyridoxal 5'- phosphate-dependent release of sulfur from L-cysteine. Incubation of purified IscU2 with IscS2, cysteine, and iron (Fe2+) resulted in the formation of [4Fe-4S] clusters in IscU2. IscU2 transferred a [4Fe-4S] cluster to purified M. acetivorans apo-aconitase. IscU2 also restored the aconitase activity in air-exposed M. acetivorans cell lysate. These biochemical results demonstrate that IscS2 is a cysteine desulfurase and that IscU2 is a Fe-S cluster scaffold. M. acetivorans strain DJL60 deleted of iscSU2 was generated to ascertain the in vivo importance of IscSU2. Strain DJL60 had Fe-S cluster content and growth similar to the parent strain but lower cysteine desulfurase activity. Strain DJL60 also had lower intracellular persulfide content compared to the parent strain when cysteine was an exogenous sulfur source, linking IscSU2 to sulfur metabolism. CONCLUSIONS: This study establishes that M. acetivorans contains functional IscS and IscU, the core components of the ISC Fe-S cluster biogenesis system and provides the first evidence that ISC operates in methanogens.


Subject(s)
Carbon-Sulfur Lyases/metabolism , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial/physiology , Iron-Sulfur Proteins/metabolism , Methanosarcina/genetics , Carbon-Sulfur Lyases/genetics , Cysteine/metabolism , Enzyme Activation , Escherichia coli Proteins/genetics , Iron/metabolism , Iron-Sulfur Proteins/genetics , Methanosarcina/enzymology , Sulfur/metabolism
5.
Appl Environ Microbiol ; 86(21)2020 10 15.
Article in English | MEDLINE | ID: mdl-32826220

ABSTRACT

CRISPR-based systems are emerging as the premier method to manipulate many cellular processes. In this study, a simple and efficient CRISPR interference (CRISPRi) system for targeted gene repression in archaea was developed. The Methanosarcina acetivorans CRISPR-Cas9 system was repurposed by replacing Cas9 with the catalytically dead Cas9 (dCas9) to generate a CRISPRi-dCas9 system for targeted gene repression. To test the utility of the system, genes involved in nitrogen (N2) fixation were targeted for dCas9-mediated repression. First, the nif operon (nifHI1I2DKEN) that encodes molybdenum nitrogenase was targeted by separate guide RNAs (gRNAs), one targeting the promoter and the other targeting nifD Remarkably, growth of M. acetivorans with N2 was abolished by dCas9-mediated repression of the nif operon with each gRNA. The abundance of nif transcripts was >90% reduced in both strains expressing the gRNAs, and NifD was not detected in cell lysate. Next, we targeted NifB, which is required for nitrogenase cofactor biogenesis. Expression of a gRNA targeting the coding sequence of NifB decreased nifB transcript abundance >85% and impaired but did not abolish growth of M. acetivorans with N2 Finally, to ascertain the ability to study gene regulation using CRISPRi-dCas9, nrpR1, encoding a subunit of the repressor of the nif operon, was targeted. The nrpR1 repression strain grew normally with N2 but had increased nif operon transcript abundance, consistent with NrpR1 acting as a repressor. These results highlight the utility of the system, whereby a single gRNA when expressed with dCas9 can block transcription of targeted genes and operons in M. acetivoransIMPORTANCE Genetic tools are needed to understand and manipulate the biology of archaea, which serve critical roles in the biosphere. Methanogenic archaea (methanogens) are essential for the biological production of methane, an intermediate in the global carbon cycle, an important greenhouse gas, and a biofuel. The CRISPRi-dCas9 system in the model methanogen Methanosarcina acetivorans is, to our knowledge, the first Cas9-based CRISPR interference system in archaea. Results demonstrate that the system is remarkably efficient in targeted gene repression and provide new insight into nitrogen fixation by methanogens, the only archaea with nitrogenase. Overall, the CRISPRi-dCas9 system provides a simple, yet powerful, genetic tool to control the expression of target genes and operons in methanogens.


Subject(s)
Archaeal Proteins/genetics , CRISPR-Cas Systems , Genes, Archaeal/genetics , Methanosarcina/genetics , Nitrogen Fixation/genetics , Archaeal Proteins/metabolism , Gene Expression , Methanosarcina/metabolism
6.
J Biol Chem ; 293(24): 9198-9209, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29720404

ABSTRACT

Disulfide reductases reduce other proteins and are critically important for cellular redox signaling and homeostasis. Methanosarcina acetivorans is a methane-producing microbe from the domain Archaea that produces a ferredoxin:disulfide reductase (FDR) for which the crystal structure has been reported, yet its biochemical mechanism and physiological substrates are unknown. FDR and the extensively characterized plant-type ferredoxin:thioredoxin reductase (FTR) belong to a distinct class of disulfide reductases that contain a unique active-site [4Fe-4S] cluster. The results reported here support a mechanism for FDR similar to that reported for FTR with notable exceptions. Unlike FTR, FDR contains a rubredoxin [1Fe-0S] center postulated to mediate electron transfer from ferredoxin to the active-site [4Fe-4S] cluster. UV-visible, EPR, and Mössbauer spectroscopic data indicated that two-electron reduction of the active-site disulfide in FDR involves a one-electron-reduced [4Fe-4S]1+ intermediate previously hypothesized for FTR. Our results support a role for an active-site tyrosine in FDR that occupies the equivalent position of an essential histidine in the active site of FTR. Of note, one of seven Trxs encoded in the genome (Trx5) and methanoredoxin, a glutaredoxin-like enzyme from M. acetivorans, were reduced by FDR, advancing the physiological understanding of FDR's role in the redox metabolism of methanoarchaea. Finally, bioinformatics analyses show that FDR homologs are widespread in diverse microbes from the domain Bacteria.


Subject(s)
Archaea/enzymology , Bacteria/enzymology , Disulfides/metabolism , Ferredoxins/metabolism , Iron-Sulfur Proteins/metabolism , Methanosarcina/enzymology , NADH, NADPH Oxidoreductases/metabolism , Oxidoreductases/metabolism , Archaea/chemistry , Archaea/metabolism , Bacteria/chemistry , Bacteria/metabolism , Catalytic Domain , Disulfides/chemistry , Electron Transport , Ferredoxins/chemistry , Iron-Sulfur Proteins/chemistry , Methanosarcina/chemistry , Methanosarcina/metabolism , Models, Molecular , NADH, NADPH Oxidoreductases/chemistry , Oxidation-Reduction , Oxidoreductases/chemistry , Spinacia oleracea/chemistry , Spinacia oleracea/enzymology , Spinacia oleracea/metabolism
7.
Microbiologyopen ; 6(1)2017 02.
Article in English | MEDLINE | ID: mdl-27557794

ABSTRACT

Subunits Rpo3 and Rpb3/AC40 of RNA polymerase (RNAP) from many archaea and some eukaryotes, respectively, contain a ferredoxin-like domain (FLD) predicted to bind one or two [4Fe-4S] clusters postulated to play a role in regulating the assembly of RNAP. To test this hypothesis, the two [4Fe-4S] cluster Rpo3 from Methanosarcina acetivorans was modified to generate variants that lack the FLD or each [4Fe-4S] cluster. Viability of gene replacement mutants revealed that neither the FLD nor the ability of the FLD to bind either [4Fe-4S] cluster is essential. Nevertheless, each mutant demonstrated impaired growth due to significantly lower RNAP activity when compared to wild type. Affinity purification of tagged Rpo3 variants from M. acetivorans strains revealed that neither the FLD nor each [4Fe-4S] cluster is required for the formation of a Rpo3/11 heterodimer, the first step in the assembly of RNAP. However, the association of the Rpo3/11 heterodimer with catalytic subunits Rpo2' and Rpo1″ was diminished by the removal of the FLD and each cluster, with the loss of cluster 1 having a more substantial effect than the loss of cluster 2. These results reveal that the FLD and [4Fe-4S] clusters, particularly cluster 1, are key determinants in the post Rpo3/11 heterodimer assembly of RNAP in M. acetivorans.


Subject(s)
DNA-Directed RNA Polymerases/genetics , Iron-Sulfur Proteins/genetics , Methanosarcina/enzymology , Methanosarcina/genetics , DNA-Directed RNA Polymerases/metabolism , Ferredoxins/metabolism , Genetic Variation/genetics , Iron-Sulfur Proteins/metabolism , Methanosarcina/growth & development , Protein Structure, Tertiary , Protein Subunits/genetics
8.
Microbiology (Reading) ; 163(1): 62-74, 2017 01.
Article in English | MEDLINE | ID: mdl-27902413

ABSTRACT

The thioredoxin system plays a central role in the intracellular redox maintenance in the majority of cells. The canonical system consists of an NADPH-dependent thioredoxin reductase (TrxR) and thioredoxin (Trx), a disulfide reductase. Although Trx is encoded in almost all sequenced genomes of methanogens, its incorporation into their unique physiology is not well understood. Methanosarcina acetivorans contains a single TrxR (MaTrxR) and seven Trx (MaTrx1-MaTrx7) homologues. We previously showed that MaTrxR and at least MaTrx7 compose a functional NADPH-dependent thioredoxin system. Here, we report the characterization of all seven recombinant MaTrxs. MaTrx1, MaTrx3, MaTrx4 and MaTrx5 lack appreciable disulfide reductase activity, unlike previously characterized MaTrx2, MaTrx6 and MaTrx7. Enzyme assays demonstrated that, of the MaTrxs, only the reduction of disulfide-containing MaTrx7 is linked to the oxidation of reduced coenzymes. NADPH is shown to be supplied to the MaTrxR-MaTrx7 system through the oxidation of the primary methanogen electron carriers F420H2 and ferredoxin, indicating that it serves as a primary intracellular reducing system in M. acetivorans. Bioinformatic analyses also indicate that the majority of methanogens likely utilize an NADPH-dependent thioredoxin system. The remaining MaTrxs may have specialized functions. MaTrx1 and MaTrx3 exhibited thiol oxidase activity. MaTrx3 and MaTrx6 are targeted to the membrane of M. acetivorans and likely function in the formation and the reduction of disulfides in membrane and/or extracellular proteins, respectively. This work provides insight into the incorporation of Trx into the metabolism of methanogens, and this reveals that methanogens contain Trx homologues with alternative properties and activities.


Subject(s)
Membrane Proteins/metabolism , Methanosarcina/metabolism , Thioredoxin-Disulfide Reductase/metabolism , Thioredoxins/metabolism , Disulfides/chemistry , Ferredoxins/chemistry , Methanosarcina/genetics , NAD/chemistry , NADP/chemistry , Oxidation-Reduction , Protein Isoforms/genetics , Protein Isoforms/metabolism , Thioredoxin-Disulfide Reductase/genetics , Thioredoxins/genetics
9.
J Ind Microbiol Biotechnol ; 42(6): 965-9, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25791378

ABSTRACT

The production of biogas (methane) by an anaerobic digestion is an important facet to renewable energy, but is subject to instability due to the sensitivity of strictly anaerobic methanogenic archaea (methanogens) to environmental perturbations, such as oxygen. An understanding of the oxidant-sensing mechanisms used by methanogens may lead to the development of more oxidant tolerant (i.e., stable) methanogen strains. MsvR is a redox-sensitive transcriptional regulator that is found exclusively in methanogens. We show here that oxidation of MsvR from Methanosarcina acetivorans (MaMsvR) with hydrogen peroxide oxidizes cysteine thiols, which inactivates MaMsvR binding to its own promoter (P(msvR)). Incubation of oxidized MaMsvR with the M. acetivorans thioredoxin system (NADPH, MaTrxR, and MaTrx7) results in reduction of the cysteines back to thiols and activation of P msvR binding. These data confirm that cysteines are critical for the thiol-disulfide regulation of P(msvR) binding by MaMsvR and support a role for the M. acetivorans thioredoxin system in the in vivo activation of MaMsvR. The results support the feasibility of using MaMsvR and P(msvR), along with the Methanosarcina genetic system, to design methanogen strains with oxidant-regulated gene expression systems, which may aid in stabilizing anaerobic digestion.


Subject(s)
Archaeal Proteins/metabolism , DNA/metabolism , Gene Expression Regulation, Archaeal , Methanosarcina/genetics , Methanosarcina/metabolism , Thioredoxins/metabolism , Transcription Factors/metabolism , Anaerobiosis , Cysteine/chemistry , Cysteine/metabolism , DNA/genetics , Disulfides/metabolism , Gene Expression Regulation, Archaeal/drug effects , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Methanosarcina/drug effects , NADP/metabolism , Oxidants/metabolism , Oxidants/pharmacology , Oxidation-Reduction/drug effects , Promoter Regions, Genetic/genetics , Protein Binding/drug effects , Sulfhydryl Compounds/metabolism , Thioredoxin-Disulfide Reductase/metabolism , Transcription, Genetic/drug effects , Transcription, Genetic/genetics
10.
FEBS J ; 281(20): 4598-611, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25112424

ABSTRACT

The thioredoxin system, composed of thioredoxin reductase (TrxR) and thioredoxin (Trx), is widely distributed in nature, where it serves key roles in electron transfer and in the defense against oxidative stress. Although recent evidence reveals Trx homologues are almost universally present among the methane-producing archaea (methanogens), a complete thioredoxin system has not been characterized from any methanogen. We examined the phylogeny of Trx homologues among methanogens and characterized the thioredoxin system from Methanosarcina acetivorans. Phylogenetic analysis of Trx homologues from methanogens revealed eight clades, with one clade containing Trxs broadly distributed among methanogens. The Methanococci and Methanobacteria each contain one additional Trx from another clade, respectively, whereas the Methanomicrobia contain an additional five distinct Trxs. Methanosarcina acetivorans, a member of the Methanomicrobia, contains a single TrxR (MaTrxR) and seven Trx homologues (MaTrx1-7), with representatives from five of the methanogen Trx clades. Purified recombinant MaTrxR had 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) reductase and oxidase activities. The apparent Km value for NADPH was 115-fold lower than that for NADH, consistent with NADPH as the physiological electron donor to MaTrxR. Purified recombinant MaTrx2, MaTrx6 and MaTrx7 exhibited dithiothreitol- and lipoamide-dependent insulin disulfide reductase activities. However, only MaTrx7, which is encoded adjacent to MaTrxR, could serve as a redox partner to MaTrxR. These results reveal that M. acetivorans harbors at least three functional and distinct Trxs, and a complete thioredoxin system composed of NADPH, MaTrxR and at least MaTrx7. This is the first characterization of a complete thioredoxin system from a methanogen, which provides a foundation to understand the system in methanogens.


Subject(s)
Methanosarcina/metabolism , NADP/metabolism , Recombinant Proteins/metabolism , Thioredoxin-Disulfide Reductase/metabolism , Thioredoxins/metabolism , Cloning, Molecular , Electron Transport , Methanosarcina/growth & development , Oxidation-Reduction , Phylogeny , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Substrate Specificity , Thioredoxins/classification , Thioredoxins/genetics , Thioredoxins/isolation & purification
11.
Microbiology (Reading) ; 160(Pt 2): 270-278, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24222618

ABSTRACT

Haem-dependent catalase is an antioxidant enzyme that degrades H2O2, producing H2O and O2, and is common in aerobes. Catalase is present in some strictly anaerobic methane-producing archaea (methanogens), but the importance of catalase to the antioxidant system of methanogens is poorly understood. We report here that a survey of the sequenced genomes of methanogens revealed that the majority of species lack genes encoding catalase. Moreover, Methanosarcina acetivorans is a methanogen capable of synthesizing haem and encodes haem-dependent catalase in its genome; yet, Methanosarcina acetivorans cells lack detectable catalase activity. However, inducible expression of the haem-dependent catalase from Escherichia coli (EcKatG) in the chromosome of Methanosarcina acetivorans resulted in a 100-fold increase in the endogenous catalase activity compared with uninduced cells. The increased catalase activity conferred a 10-fold increase in the resistance of EcKatG-induced cells to H2O2 compared with uninduced cells. The EcKatG-induced cells were also able to grow when exposed to levels of H2O2 that inhibited or killed uninduced cells. However, despite the significant increase in catalase activity, growth studies revealed that EcKatG-induced cells did not exhibit increased tolerance to O2 compared with uninduced cells. These results support the lack of catalase in the majority of methanogens, since methanogens are more likely to encounter O2 rather than high concentrations of H2O2 in the natural environment. Catalase appears to be a minor component of the antioxidant system in methanogens, even those that are aerotolerant, including Methanosarcina acetivorans. Importantly, the experimental approach used here demonstrated the feasibility of engineering beneficial traits, such as H2O2 tolerance, in methanogens.


Subject(s)
Catalase/biosynthesis , Escherichia coli/enzymology , Gene Expression , Hydrogen Peroxide/metabolism , Methanosarcina/enzymology , Methanosarcina/metabolism , Oxygen/metabolism , Catalase/genetics , Escherichia coli/genetics , Escherichia coli Proteins/biosynthesis , Escherichia coli Proteins/genetics , Hydrogen Peroxide/toxicity , Methanosarcina/drug effects , Methanosarcina/genetics , Microbial Viability/drug effects , Oxygen/toxicity , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics
12.
BMC Microbiol ; 13: 163, 2013 Jul 16.
Article in English | MEDLINE | ID: mdl-23865844

ABSTRACT

BACKGROUND: Methanoarchaea are among the strictest known anaerobes, yet they can survive exposure to oxygen. The mechanisms by which they sense and respond to oxidizing conditions are unknown. MsvR is a transcription regulatory protein unique to the methanoarchaea. Initially identified and characterized in the methanogen Methanothermobacter thermautotrophicus (Mth), MthMsvR displays differential DNA binding under either oxidizing or reducing conditions. Since MthMsvR regulates a potential oxidative stress operon in M. thermautotrophicus, it was hypothesized that the MsvR family of proteins were redox-sensitive transcription regulators. RESULTS: An MsvR homologue from the methanogen Methanosarcina acetivorans, MaMsvR, was overexpressed and purified. The two MsvR proteins bound the same DNA sequence motif found upstream of all known MsvR encoding genes, but unlike MthMsvR, MaMsvR did not bind the promoters of select genes involved in the oxidative stress response. Unlike MthMsvR that bound DNA under both non-reducing and reducing conditions, MaMsvR bound DNA only under reducing conditions. MaMsvR appeared as a dimer in gel filtration chromatography analysis and site-directed mutagenesis suggested that conserved cysteine residues within the V4R domain were involved in conformational rearrangements that impact DNA binding. CONCLUSIONS: Results presented herein suggest that homodimeric MaMsvR acts as a transcriptional repressor by binding Ma PmsvR under non-reducing conditions. Changing redox conditions promote conformational changes that abrogate binding to Ma PmsvR which likely leads to de-repression.


Subject(s)
Archaeal Proteins/metabolism , Cysteine/metabolism , DNA, Archaeal/metabolism , DNA-Binding Proteins/metabolism , Methanosarcina/metabolism , Repressor Proteins/metabolism , Archaeal Proteins/isolation & purification , Binding Sites , Cysteine/genetics , DNA Mutational Analysis , DNA-Binding Proteins/isolation & purification , Methanobacteriaceae/metabolism , Mutagenesis, Site-Directed , Oxidation-Reduction , Promoter Regions, Genetic , Protein Multimerization , Repressor Proteins/isolation & purification
13.
FEMS Microbiol Lett ; 343(1): 13-9, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23448147

ABSTRACT

All methane-producing Archaea (methanogens) are strict anaerobes, but the majority of species are tolerant to oxidants. Methanosarcina species are important environmental and industrial methanogens as they are one of only two genera capable of producing methane with acetate. Importantly, Methanosarcina species appear to be the most oxidant-tolerant; however, the mechanisms underlying this tolerance are poorly understood. We report herein two similar methods (spot-plating and microtiter plate) developed to examine the oxidant tolerance of Methanosarcina acetivorans by viability assessment. Both methods revealed that M. acetivorans can tolerate exposure to millimolar levels of hydrogen peroxide (H2O2 ) without a complete loss of viability. The exogenous addition of catalase was also shown to protect M. acetivorans from H2O2 toxicity, indicating catalase can serve as an antioxidant enzyme in methanogens even though oxygen is a byproduct. Of the two methods, the microtiter plate method provided a simple, reliable, and inexpensive method to assess viability of M. acetivorans. Combined with recent advances in the genetic manipulation of methanogens, methods in assessment of methanogen oxidant tolerance will aid in the identification of components of the antioxidant defense systems.


Subject(s)
Methanosarcina/drug effects , Oxidants/toxicity , Anti-Infective Agents/toxicity , Hydrogen Peroxide/toxicity , Microbial Sensitivity Tests/methods , Microbial Viability/drug effects
14.
J Biol Chem ; 287(22): 18510-23, 2012 May 25.
Article in English | MEDLINE | ID: mdl-22457356

ABSTRACT

Subunit D of multisubunit RNA polymerase from many species of archaea is predicted to bind one to two iron-sulfur (Fe-S) clusters, the function of which is unknown. A survey of encoded subunit D in the genomes of sequenced archaea revealed six distinct groups based on the number of complete or partial [4Fe-4S] cluster motifs within domain 3. Only subunit D from strictly anaerobic archaea, including all members of the Methanosarcinales, are predicted to bind two [4Fe-4S] clusters. We report herein the purification and characterization of Methanosarcina acetivorans subunit D in complex with subunit L. Expression of subunit D and subunit L in Escherichia coli resulted in the purification of a D-L heterodimer with only partial [4Fe-4S] cluster content. Reconstitution in vitro with iron and sulfide revealed that the M. acetivorans D-L heterodimer is capable of binding two redox-active [4Fe-4S] clusters. M. acetivorans subunit D deleted of domain 3 (DΔD3) was still capable of co-purifying with subunit L but was devoid of [4Fe-4S] clusters. Affinity purification of subunit D or subunit DΔD3 from M. acetivorans resulted in the co-purification of endogenous subunit L with each tagged subunit D. Overall, these results suggest that domain 3 of subunit D is required for [4Fe-4S] cluster binding, but the [4Fe-4S] clusters and domain 3 are not required for the formation of the D-L heterodimer. However, exposure of two [4Fe-4S] cluster-containing D-L heterodimer to oxygen resulted in loss of the [4Fe-4S] clusters and subsequent protein aggregation, indicating that the [4Fe-4S] clusters influence the stability of the D-L heterodimer and therefore have the potential to regulate the assembly and/or activity of RNA polymerase in an oxidant-dependent manner.


Subject(s)
DNA-Directed RNA Polymerases/metabolism , Gene Expression Regulation , Iron-Sulfur Proteins/metabolism , Methanosarcina/enzymology , Oxygen/metabolism , Transcription, Genetic , Amino Acid Sequence , Base Sequence , DNA Primers , DNA-Directed RNA Polymerases/chemistry , Dimerization , Molecular Sequence Data , Oxidation-Reduction , Polymerase Chain Reaction , Sequence Homology, Amino Acid
15.
mBio ; 1(5)2010 Nov 02.
Article in English | MEDLINE | ID: mdl-21060738

ABSTRACT

A plasmid-based expression system wherein mekB was fused to a constitutive Methanosarcina acetivorans promoter was used to express MekB, a broad-specificity esterase from Pseudomonas veronii, in M. acetivorans. The engineered strain had 80-fold greater esterase activity than wild-type M. acetivorans. Methyl acetate and methyl propionate esters served as the sole carbon and energy sources, resulting in robust growth and methane formation, with consumption of >97% of the substrates. Methanol was undetectable at the end of growth with methyl acetate, whereas acetate accumulated, a result consistent with methanol as the more favorable substrate. Acetate was consumed, and growth continued after a period of adaptation. Similar results were obtained with methyl propionate, except propionate was not metabolized.


Subject(s)
Metabolic Networks and Pathways/genetics , Methane/metabolism , Methanosarcina/genetics , Methanosarcina/metabolism , Pseudomonas/enzymology , Pseudomonas/genetics , Acetates/metabolism , Carbon/metabolism , Energy Metabolism , Esterases/genetics , Esterases/metabolism , Genetic Engineering/methods , Genetic Vectors , Methanol/metabolism , Methanosarcina/growth & development , Plasmids , Promoter Regions, Genetic , Propionates/metabolism
16.
Ann N Y Acad Sci ; 1125: 147-57, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18378593

ABSTRACT

The anaerobic conversion of complex organic matter to CH(4) is an essential link in the global carbon cycle. In freshwater anaerobic environments, the organic matter is decomposed to CH(4) and CO(2) by a microbial food chain that terminates with methanogens that produce methane primarily by reduction of the methyl group of acetate and also reduction of CO(2). The process also occurs in marine environments, particularly those receiving large loads of organic matter, such as coastal sediments. The great majority of research on methanogens has focused on marine and freshwater CO(2)-reducing species, and freshwater acetate-utilizing species. Recent molecular, biochemical, bioinformatic, proteomic, and microarray analyses of the marine isolate Methanosarcina acetivorans has revealed that the pathway for acetate conversion to methane differs significantly from that in freshwater methanogens. Similar experimental approaches have also revealed striking contrasts with freshwater species for the pathway of CO-dependent CO(2) reduction to methane by M. acetivorans. The differences in both pathways reflect an adaptation by M. acetivorans to the marine environment.


Subject(s)
Acetates/metabolism , Geologic Sediments/microbiology , Methane/metabolism , Methanosarcina/metabolism , Seawater/microbiology , Anaerobiosis , Models, Biological
17.
J Bacteriol ; 189(20): 7475-84, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17675382

ABSTRACT

Methanosarcina acetivorans, a strictly anaerobic methane-producing species belonging to the domain Archaea, contains a gene cluster annotated with homologs encoding oxidative stress proteins. One of the genes (MA3736) is annotated as a gene encoding an uncharacterized carboxymuconolactone decarboxylase, an enzyme required for aerobic growth with aromatic compounds by species in the domain Bacteria. Methane-producing species are not known to utilize aromatic compounds, suggesting that MA3736 is incorrectly annotated. The product of MA3736, overproduced in Escherichia coli, had protein disulfide reductase activity dependent on a C(67)XXC(70) motif not found in carboxymuconolactone decarboxylase. We propose that MA3736 be renamed mdrA (methanosarcina disulfide reductase). Further, unlike carboxymuconolactone decarboxylase, MdrA contained an Fe-S cluster. Binding of the Fe-S cluster was dependent on essential cysteines C(67) and C(70), while cysteines C(39) and C(107) were not required. Loss of the Fe-S cluster resulted in conversion of MdrA from an inactive hexamer to a trimer with protein disulfide reductase activity. The data suggest that MdrA is the prototype of a previously unrecognized protein disulfide reductase family which contains an intermolecular Fe-S cluster that controls oligomerization as a mechanism to regulate protein disulfide reductase activity.


Subject(s)
Iron-Sulfur Proteins/isolation & purification , Iron-Sulfur Proteins/metabolism , Methanosarcina/enzymology , Methanosarcina/genetics , Protein Disulfide Reductase (Glutathione)/isolation & purification , Protein Disulfide Reductase (Glutathione)/metabolism , Amino Acid Motifs/genetics , Amino Acid Sequence , Cloning, Molecular , Escherichia coli/genetics , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/genetics , Molecular Sequence Data , Phylogeny , Protein Disulfide Reductase (Glutathione)/chemistry , Protein Disulfide Reductase (Glutathione)/genetics , Protein Subunits , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Sequence Alignment
18.
Proc Natl Acad Sci U S A ; 103(47): 17921-6, 2006 Nov 21.
Article in English | MEDLINE | ID: mdl-17101988

ABSTRACT

Methanosarcina acetivorans produces acetate, formate, and methane when cultured with CO as the growth substrate [Rother M, Metcalf WW (2004) Proc Natl Acad Sci USA 101:], which suggests novel features of CO metabolism. Here we present a genome-wide proteomic approach to identify and quantify proteins differentially abundant in response to growth on CO versus methanol or acetate. The results indicate that oxidation of CO to CO2 supplies electrons for reduction of CO2 to a methyl group by steps and enzymes of the pathway for CO2 reduction determined for other methane-producing species. However, proteomic and quantitative RT-PCR results suggest that reduction of the methyl group to methane involves novel methyltransferases and a coenzyme F420H2:heterodisulfide oxidoreductase system that generates a proton gradient for ATP synthesis not previously described for pathways reducing CO2 to methane. Biochemical assays support a role for the oxidoreductase, and transcriptional mapping identified an unusual operon structure encoding the oxidoreductase. The proteomic results further indicate that acetate is synthesized from the methyl group and CO by a reversal of initial steps in the pathway for conversion of acetate to methane that yields ATP by substrate level phosphorylation. The results indicate that M. acetivorans utilizes a pathway distinct from all known CO2 reduction pathways for methane formation that reflects an adaptation to the marine environment. Finally, the pathway supports the basis for a recently proposed primitive CO-dependent energy-conservation cycle that drove and directed the early evolution of life on Earth.


Subject(s)
Bacterial Proteins/analysis , Carbon Dioxide/metabolism , Carbon Monoxide/metabolism , Methane/metabolism , Methanosarcina/metabolism , Proteomics , Acetates/metabolism , Amino Acid Sequence , Bacterial Proteins/genetics , Base Sequence , Methanosarcina/genetics , Molecular Sequence Data , Operon , Oxidation-Reduction , Oxidoreductases/metabolism
19.
J Bacteriol ; 188(2): 702-10, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16385060

ABSTRACT

A liquid chromatography-hybrid linear ion trap-Fourier transform ion cyclotron resonance mass spectrometry approach was used to determine the differential abundance of proteins in acetate-grown cells compared to that of proteins in methanol-grown cells of the marine isolate Methanosarcina acetivorans metabolically labeled with 14N versus 15N. The 246 differentially abundant proteins in M. acetivorans were compared with the previously reported 240 differentially expressed genes of the freshwater isolate Methanosarcina mazei determined by transcriptional profiling of acetate-grown cells compared to methanol-grown cells. Profound differences were revealed for proteins involved in electron transport and energy conservation. Compared to methanol-grown cells, acetate-grown M. acetivorans synthesized greater amounts of subunits encoded in an eight-gene transcriptional unit homologous to operons encoding the ion-translocating Rnf electron transport complex previously characterized from the Bacteria domain. Combined with sequence and physiological analyses, these results suggest that M. acetivorans replaces the H2-evolving Ech hydrogenase complex of freshwater Methanosarcina species with the Rnf complex, which generates a transmembrane ion gradient for ATP synthesis. Compared to methanol-grown cells, acetate-grown M. acetivorans synthesized a greater abundance of proteins encoded in a seven-gene transcriptional unit annotated for the Mrp complex previously reported to function as a sodium/proton antiporter in the Bacteria domain. The differences reported here between M. acetivorans and M. mazei can be attributed to an adaptation of M. acetivorans to the marine environment.


Subject(s)
Acetates/metabolism , Marine Biology , Methane/metabolism , Methanosarcina/metabolism , Amino Acid Sequence , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Culture Media , Electron Transport , Genes, Archaeal , Methanosarcina/genetics , Methanosarcina/growth & development , Molecular Sequence Data , Multigene Family , Sequence Alignment
20.
J Mol Biol ; 348(5): 1139-51, 2005 May 20.
Article in English | MEDLINE | ID: mdl-15854650

ABSTRACT

Nitroaromatic compounds are used extensively in many industrial processes and have been released into the environment where they are considered environmental pollutants. Nitroaromatic compounds, in general, are resistant to oxidative attack due to the electron-withdrawing nature of the nitro groups and the stability of the benzene ring. However, the bacterium Comamonas sp. strain JS765 can grow with nitrobenzene as a sole source of carbon, nitrogen and energy. Biodegradation is initiated by the nitrobenzene dioxygenase (NBDO) system. We have determined the structure of NBDO, which has a hetero-hexameric structure similar to that of several other Rieske non-heme iron dioxygenases. The catalytic subunit contains a Rieske iron-sulfur center and an active-site mononuclear iron atom. The structures of complexes with substrates nitrobenzene and 3-nitrotoluene reveal the structural basis for its activity with nitroarenes. The substrate pocket contains an asparagine residue that forms a hydrogen bond to the nitro-group of the substrate, and orients the substrate in relation to the active-site mononuclear iron atom, positioning the molecule for oxidation at the nitro-substituted carbon.


Subject(s)
Bacterial Proteins/chemistry , Comamonas/enzymology , Dioxygenases/chemistry , Nitrobenzenes/metabolism , Amino Acid Sequence , Biodegradation, Environmental , Crystallography , Molecular Sequence Data , Molecular Structure , Protein Binding , Protein Conformation , Sequence Alignment , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...