Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters











Publication year range
1.
Energy Fuels ; 38(17): 16473-16489, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39257465

ABSTRACT

Bio-oils contain a substantial number of highly oxygenated hydrocarbons, which often exhibit low thermal stability during storage, handling, and refining. The primary objectives of this study are to characterize the hydroxyl group in bio-oil fractions and to investigate the relationship between the type of hydroxyl group and accelerated aging behavior. A bio-oil was fractionated into five solubility-based fractions, classified in two main groups: water-soluble and water-insoluble fractions. These fractions were then subjected to chemoselective reactions to tag molecules containing hydroxyl groups and analyzed by negative-ion electrospray ionization 21 T Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). The fractions were also subjected to accelerated aging experiments and characterized by FT-ICR MS and bulk viscosity measurements. Extracting insightful information from ultrahigh-resolution data to aid in predicting upgrading methodologies and instability behaviors of bio-oils is challenging due to the complexity of the data. To address this, an unsupervised learning technique, k-means clustering analysis, was used to semiquantify molecular compositions with a close Euclidean distance within the (O/C, H/C) chemical space. The combination of k-means analysis with findings from chemoselective reactions allowed the distinctive hydroxyl functionalities across the samples to be inferred. Our results indicate that the hexane-soluble fraction contained numerous molecules containing primary and secondary alcohols, while the water-soluble fraction displayed diverse groups of oxygenated compounds, clustered near to carbohydrate-like and pyrolytic humin-like materials. Despite its high oxygen content, the water-soluble fraction showed minimal changes in viscosity during aging. In contrast, a significant increase in viscosity was observed in the water-insoluble materials, specifically, the low- and high-molecular-weight lignin fractions (LMWL and HMWL, respectively). Among these two fractions, the HMWL exhibited the highest increase in viscosity after only 4 h of accelerated aging. Our results indicate that this aging behavior is attributed to an increased number of molecular compositions containing phenolic groups. Thus, the chemical compositions within the HMWL are the major contributors to the viscosity changes in the bio-oil under accelerated aging conditions. This highlights the crucial role of oxygen functionality in bio-oil aging, suggesting that a high oxygen content alone does not necessarily correlate with an increase of viscosity. Unlike other bio-oil categorization methods based on constrained molecule locations within the van Krevelen compositional space, k-means clustering can identify patterns within ultrahigh-resolution data inherent to the unique chemical fingerprint of each sample.

2.
Oncogene ; 43(40): 2995-3002, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39209965

ABSTRACT

Neurofibromatosis type 2 (NF2) is a rare disorder that causes vestibular schwannomas (VS), meningiomas and ependymomas. To date, there is no FDA approved drug-based treatment for NF2. We have previously identified that BET inhibition can selectively reduce growth of the NF2-null schwannoma and Schwann cells in vitro and tumorigenesis in vivo and, separately, reported that inhibition of Focal Adhesion Kinase 1 (FAK1) via crizotinib has antiproliferative effects in NF2-null Schwann cells. The current study was aimed at determining whether combined BET and FAK inhibition can synergize and to identify the mechanisms of action. A panel of normal and NF2-null Schwann and schwannoma cell lines were used to characterize the effects of combined BET and FAK inhibition in vitro and in vivo using pharmacological and genetic approaches. The mechanism of action was explored by chromatin immunoprecipitation, ChIP-PCR, western blotting, and functional approaches. We find that combined BET and FAK inhibition are synergistic and inhibit the proliferation of NF2-null schwannoma and Schwann cell lines in vitro and in vivo, by arresting cells in the G1/S and G2/M phases of the cell cycle. Further, we identify the mechanism of action through the downregulation of FAK1 transcription by BET inhibition, which potentiates inhibition of FAK by 100-fold. Our findings suggest that combined targeting of BET and FAK1 may offer a potential therapeutic option for the treatment of NF2-related schwannomas.


Subject(s)
Cell Proliferation , Focal Adhesion Kinase 1 , Neurilemmoma , Neurofibromin 2 , Neuroma, Acoustic , Animals , Humans , Mice , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/antagonists & inhibitors , Focal Adhesion Kinase 1/genetics , Neuroma, Acoustic/pathology , Neuroma, Acoustic/genetics , Neuroma, Acoustic/drug therapy , Neuroma, Acoustic/metabolism , Neurilemmoma/pathology , Neurilemmoma/genetics , Neurilemmoma/drug therapy , Neurilemmoma/metabolism , Neurofibromin 2/genetics , Neurofibromin 2/metabolism , Cell Proliferation/drug effects , Cell Line, Tumor , Drug Synergism , Neurofibromatoses/drug therapy , Neurofibromatoses/genetics , Neurofibromatoses/pathology , Neurofibromatosis 2/genetics , Neurofibromatosis 2/drug therapy , Neurofibromatosis 2/pathology , Neurofibromatosis 2/metabolism , Schwann Cells/drug effects , Schwann Cells/metabolism , Schwann Cells/pathology , Skin Neoplasms/pathology , Skin Neoplasms/drug therapy , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Xenograft Model Antitumor Assays
3.
J Polym Environ ; 32(8): 3503-3515, 2024.
Article in English | MEDLINE | ID: mdl-39161457

ABSTRACT

Approximately 99% of plastics produced worldwide were produced by the petrochemical industry in 2019 and it is predicted that plastic consumption may double between 2023 and 2050. The use of biodegradable bioplastics represents an alternative solution to petroleum-based plastics. However, the production cost of biopolymers hinders their real-world use. The use of waste biomass as a primary carbon source for biopolymers may enable a cost-effective production of bioplastics whilst providing a solution to waste management towards a carbon-neutral and circular plastics economy. Here, we report for the first time the production of poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) with a controlled molar ratio of 2:1 3-hydroxybutyrate:3-hydroxvalerate (3HB:3HV) through an integrated pre-treatment and fermentation process followed by alkaline digestion of cassava peel waste, a renewable low-cost substrate, through Cupriavidus necator biotransformation. PHBV was subsequently melt blended with a biodegradable polymer, polycaprolactone (PCL), whereby the 30:70 (mol%) PHBV:PCL blend exhibited an excellent balance of mechanical properties and higher degradation temperatures than PHBV alone, thus providing enhanced stability and controllable properties. This work represents a potential environmental solution to waste management that can benefit cassava processing industries (or other crop processing industries) whilst developing new bioplastic materials that can be applied, for example, to packaging and biomedical engineering. Supplementary Information: The online version contains supplementary material available at 10.1007/s10924-023-03167-4.

4.
ACS Polym Au ; 4(4): 311-319, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39156557

ABSTRACT

Knowledge of molecular weight is an integral factor in polymer synthesis, and while many synthetic strategies have been developed to help control this, determination of the final molecular weight is often only measured at the end of the reaction. Herein, we provide a technique for the online determination of polymer molecular weight using a universal, solvent-independent diffusion ordered spectroscopy (DOSY) calibration and evidence its use in a variety of polymerization reactions.

5.
Sci Total Environ ; 949: 175143, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39084373

ABSTRACT

Globally, environmental impacts and population growth are driving the process intensification of wastewater treatment plants (WWTPs) via transition from conventional (2-3 wt% solids) to highly concentrated (4-6 wt% solids) wastewater sludges (HCWS). This presents an industrial challenge as HCWS are complex, non-Newtonian materials whose viscosity increases nonlinearly with solids concentration. This viscosity increase is particularly relevant for sludge pipe flow as it leads to considerable pumping pressure that ultimately limits the feasibility of pipe flow transportation. Hence, process intensification demands accurate prediction of HCWS turbulent pipe flow to design and optimise pumping infrastructure and piping systems. Such prediction requires accurate rheological characterisation of HCWS and numerical prediction of HCWS turbulent pipe flow, neither of which has been achieved to date due to respective limitations associated with benchtop rheometry and numerical turbulence models. We address these challenges by first developing accurate methods for rheological characterisation of HCWS via laminar flow of digested sludge at various solids concentrations (2-5 %) in a fully instrumented pipe loop facility at a large-scale WWTP. These rheological parameters are used in direct numerical simulation (DNS) computations (that avoid turbulence models) of turbulent pipe flow of HCWS. These predictions are then validated against turbulent flow pipe loop data. This method yields accurate (2-15 % error) predictions of HCWS turbulent pipe flow, compared with up to ∼75 % error for conventional pipe flow correlations. This validation highlights the need for accurate rheological characterisation and numerical simulation to predict HCWS pipe flow and provides a sound basis for the intensification and optimisation of WWTP pipeline systems.

6.
Inorg Chem ; 63(26): 12207-12217, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38888279

ABSTRACT

Reactions between tungsten alkylidyne [tBuOCO]W≡CtBu(THF)2 1 and sulfur containing small molecules are reported. Complex 1 reacts with CS2 to produce intermediate η2 bound CS2 complex [O2C(tBuC═)W(η2-(S,C)-CS2)(THF)] 8. Heating complex 8 provides a mixture of a monomeric tungsten sulfido complex 9 and a dimeric complex 10 in a 4:1 ratio, respectively. Heating the mixture does not perturb the ratio. Addition of excess THF in a solution of 9 and 10 (4:1) converts 10 to 9 (>96%) with concomitant loss of (CS)x. Both 9 and 10 can be selectively crystallized from the mixture. An alternative synthesis of exclusively monomeric 9 involves the reaction between 1 and PhNCS. Demonstrating ring expansion metathesis polymerization (REMP), tethered tungsten alkylidene 8 polymerizes norbornene to produce cis-selective syndiotactic cyclic polynorbornene (c-poly(NBE)).

7.
ACS Nano ; 18(18): 11655-11664, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38652866

ABSTRACT

Conjugated polymers have become materials of choice for applications ranging from flexible optoelectronics to neuromorphic computing, but their polydispersity and tendency to aggregate pose severe challenges to their precise characterization. Here, the combination of vacuum electrospray deposition (ESD) with scanning tunneling microscopy (STM) is used to acquire, within the same experiment, assembly patterns, full mass distributions, exact sequencing, and quantification of polymerization defects. In a first step, the ESD-STM results are successfully benchmarked against NMR for low molecular mass polymers, where this technique is still applicable. Then, it is shown that ESD-STM is capable of reaching beyond its limits by characterizing, with the same accuracy, samples that are inaccessible to NMR. Finally, a recalibration procedure is proposed for size exclusion chromatography (SEC) mass distributions, using ESD-STM results as a reference. The distinctiveness of the molecular-scale information obtained by ESD-STM highlights its role as a crucial technique for the characterization of conjugated polymers.

8.
Nat Commun ; 15(1): 1148, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326303

ABSTRACT

Melanoma incidence and mortality rates are historically higher for men than women. Although emerging studies have highlighted tumorigenic roles for the male sex hormone androgen and its receptor (AR) in melanoma, cellular and molecular mechanisms underlying these sex-associated discrepancies are poorly defined. Here, we delineate a previously undisclosed mechanism by which androgen-activated AR transcriptionally upregulates fucosyltransferase 4 (FUT4) expression, which drives melanoma invasiveness by interfering with adherens junctions (AJs). Global phosphoproteomic and fucoproteomic profiling, coupled with in vitro and in vivo functional validation, further reveal that AR-induced FUT4 fucosylates L1 cell adhesion molecule (L1CAM), which is required for FUT4-increased metastatic capacity. Tumor microarray and gene expression analyses demonstrate that AR-FUT4-L1CAM-AJs signaling correlates with pathological staging in melanoma patients. By delineating key androgen-triggered signaling that enhances metastatic aggressiveness, our findings help explain sex-associated clinical outcome disparities and highlight AR/FUT4 and its effectors as potential prognostic biomarkers and therapeutic targets in melanoma.


Subject(s)
Melanoma , Neural Cell Adhesion Molecule L1 , Humans , Male , Female , Melanoma/metabolism , Androgens , Neural Cell Adhesion Molecule L1/metabolism , Lewis X Antigen/metabolism , Glycosylation , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Cell Line, Tumor , Fucosyltransferases/genetics , Fucosyltransferases/metabolism
9.
Macromol Rapid Commun ; 45(8): e2300692, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38288674

ABSTRACT

Measurement of molecular weight is an integral part of macromolecular and polymer characterization which usually has limitations. Herein, this article presents the use of a bench-top 80 MHz Nuclear Magnetic Resonance (NMR) spectrometer for diffusion-ordered spectroscopy as a practical and rapid approach for the determination of molecular weight/size using a novel solvent and polymer-independent universal calibration.


Subject(s)
Macromolecular Substances , Magnetic Resonance Spectroscopy , Molecular Weight , Polymers , Polymers/chemistry , Magnetic Resonance Spectroscopy/methods , Macromolecular Substances/chemistry , Diffusion
10.
Angew Chem Int Ed Engl ; 63(8): e202318956, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38109203

ABSTRACT

Described here is a direct entry to two examples of 3d transition metal catalysts that are active for the cyclic polymerization of phenylacetylene, namely, [(BDI)M{κ2 -C,C-(Me3 SiC3 SiMe3 )}] (2-M) (BDI=[ArNC(CH3 )]2 CH- , Ar=2,6-i Pr2 C6 H3 ; M=Ti, V). Catalysts are prepared in one step by the treatment of [(BDI)MCl2 ] (1-M, M=Ti, V) with 1,3-dilithioallene [Li2 (Me3 SiC3 SiMe3 )]. Complexes 2-M have been spectroscopically and structurally characterized and the polymers that are catalytically formed from phenylacetylene were verified to have a cyclic topology based on a combination of size-exclusion chromatography (SEC) and intrinsic viscosity studies. Two-electron oxidation of 2-V with nitrous oxide (N2 O) cleanly yields a [VV ] alkylidene-alkynyl oxo complex [(BDI)V(=O){κ1 -C-(=C(SiMe3 )CC(SiMe3 ))}] (3), which lends support for how this scaffold in 2-M might be operating in the polymerization of the terminal alkyne. This work demonstrates how alkylidynes can be circumvented using 1,3-dianionic allene as a segue into M-C multiple bonds.

11.
Chem Commun (Camb) ; 59(94): 13993-13996, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37938062

ABSTRACT

Tacticity is critical to polymer properties. The influence of solvent on tacticity in the catalytic synthesis of cyclic polynorbornene (c-PNB) is reported. In toluene cis,syndiotactic c-PNB forms; in THF, cis,syn/iso c-PNB forms.

12.
J Am Chem Soc ; 145(41): 22796-22802, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37812163

ABSTRACT

The synthesis, characterization, and preliminary activity of an unprecedented tethered alkylidyne tungsten complex for ring expansion alkyne metathesis polymerization (REAMP) are reported. The tethered alkylidyne 7 is generated rapidly by combining alkylidyne W(CtBu)(CH2tBu)(O-2,6-i-Pr2C6H3)2 (6) with 1 equiv of an yne-ol proligand (5). Characterized by NMR studies and nuclear Overhauser effect spectroscopy, complex 7 is a dimer. Each metal center contains a tungsten-carbon triple bond tethered to the metal center via an alkoxide ligand. The polymerization of the strained cycloalkyne 3,8-didodecyloxy-5,6-dihydro-11,12-didehydrodibenzo[a,e]-[8]annulene, 8, to generate cyclic polymers was demonstrated. Size exclusion chromatography (SEC) and intrinsic viscosity (η) measurements confirm the polymer's cyclic topology.

13.
Build Environ ; 241: 110486, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37287526

ABSTRACT

It is now widely recognised that aerosol transport is major vector for transmission of diseases such as COVID-19, and quantification of aerosol transport in the built environment is critical to risk analysis and management. Understanding the effects of door motion and human movement on the dispersion of virus-laden aerosols under pressure-equilibrium conditions is of great significance to the evaluation of infection risks and development of mitigation strategies. This study uses novel numerical simulation techniques to quantify the impact of these motions upon aerosol transport and provides valuable insights into the wake dynamics of swinging doors and human movement. The results show that the wake flow of an opening swinging door delays aerosol escape, while that of a person walking out entrains aerosol out of the room. Aerosol escape caused by door motion mainly happens during the closing sequence which pushes the aerosols out. Parametric studies show that while an increased door swinging speed or human movement speed can enhance air exchange across the doorway, the cumulative aerosol exchange across the doorway is not clearly affected by the speeds.

14.
Nat Commun ; 14(1): 891, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36797229

ABSTRACT

The atypical cadherins Fat and Dachsous are key regulators of cell growth and animal development. In contrast to classical cadherins, which form homophilic interactions to segregate cells, Fat and Dachsous cadherins form heterophilic interactions to induce cell polarity within tissues. Here, we determine the co-crystal structure of the human homologs Fat4 and Dachsous1 (Dchs1) to establish the molecular basis for Fat-Dachsous interactions. The binding domains of Fat4 and Dchs1 form an extended interface along extracellular cadherin (EC) domains 1-4 of each protein. Biophysical measurements indicate that Fat4-Dchs1 affinity is among the highest reported for cadherin superfamily members, which is attributed to an extensive network of salt bridges not present in structurally similar protocadherin homodimers. Furthermore, modeling suggests that unusual extracellular phosphorylation modifications directly modulate Fat-Dachsous binding by introducing charged contacts across the interface. Collectively, our analyses reveal how the molecular architecture of Fat4-Dchs1 enables them to form long-range, high-affinity interactions to maintain planar cell polarity.


Subject(s)
Cadherins , Cell Polarity , Tumor Suppressor Proteins , Humans , Cadherins/chemistry , Tumor Suppressor Proteins/chemistry , Cadherin Related Proteins/chemistry
15.
Nat Cancer ; 4(2): 222-239, 2023 02.
Article in English | MEDLINE | ID: mdl-36690875

ABSTRACT

Immunotherapy efficacy is limited in melanoma, and combinations of immunotherapies with other modalities have yielded limited improvements but also adverse events requiring cessation of treatment. In addition to ineffective patient stratification, efficacy is impaired by paucity of intratumoral immune cells (itICs); thus, effective strategies to safely increase itICs are needed. We report that dietary administration of L-fucose induces fucosylation and cell surface enrichment of the major histocompatibility complex (MHC)-II protein HLA-DRB1 in melanoma cells, triggering CD4+ T cell-mediated increases in itICs and anti-tumor immunity, enhancing immune checkpoint blockade responses. Melanoma fucosylation and fucosylated HLA-DRB1 associate with intratumoral T cell abundance and anti-programmed cell death protein 1 (PD1) responder status in patient melanoma specimens, suggesting the potential use of melanoma fucosylation as a strategy for stratifying patients for immunotherapies. Our findings demonstrate that fucosylation is a key mediator of anti-tumor immunity and, importantly, suggest that L-fucose is a powerful agent for safely increasing itICs and immunotherapy efficacy in melanoma.


Subject(s)
Fucose , Melanoma , Humans , HLA-DRB1 Chains/genetics , HLA-DRB1 Chains/metabolism , Fucose/metabolism , Melanoma/drug therapy , Immunotherapy , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/pathology
16.
J Hazard Mater ; 436: 129278, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35739790

ABSTRACT

Polyethylene (PE) is one of the most recalcitrant carbon-based synthetic materials produced and, currently, the most ubiquitous plastic pollutant found in nature. Over time, combined abiotic and biotic processes are thought to eventually breakdown PE. Despite limited evidence of biological PE degradation and speculation that hydrocarbon-degrading bacteria found within the plastisphere is an indication of biodegradation, there is no clear mechanistic understanding of the process. Here, using high-throughput proteomics, we investigated the molecular processes that take place in the hydrocarbon-degrading marine bacterium Alcanivorax sp. 24 when grown in the presence of low density PE (LDPE). As well as efficiently utilising and assimilating the leachate of weathered LDPE, the bacterium was able to reduce the molecular weight distribution (Mw from 122 to 83 kg/mol) and overall mass of pristine LDPE films (0.9 % after 34 days of incubation). Most interestingly, Alcanivorax acquired the isotopic signature of the pristine plastic and induced an extensive array of metabolic pathways for aliphatic compound degradation. Presumably, the primary biodegradation of LDPE by Alcanivorax sp. 24 is possible via the production of extracellular reactive oxygen species as observed both by the material's surface oxidation and the measurement of superoxide in the culture with LDPE. Our findings confirm that hydrocarbon-biodegrading bacteria within the plastisphere may in fact have a role in degrading PE.


Subject(s)
Alcanivoraceae , Alcanivoraceae/metabolism , Bacteria/metabolism , Biodegradation, Environmental , Hydrocarbons/metabolism , Plastics/metabolism , Polyethylene/metabolism
17.
Water Res ; 219: 118555, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35561619

ABSTRACT

Sedimentation in waste water is a heavily studied topic, but mainly focused on hindered and compression settling in secondary sludge, a largely monodispersed solids, where bulk sedimentation velocity is effectively described by functions such as double Vesilind (Takacs). However, many waste water solids, including primary sludge and anaerobic digester effluent are polydispersed, for which application of velocity functions is not well understood. These systems are also subject to large concentration gradients, and poor availability of settling velocity functions has limited design and computational fluid dynamic (CFD) analysis of these units. In this work, we assess the use of various sedimentation functions in single and multi-dimensional domains, comparing model results against multiple batch settling tests at a range of high and low concentrations. Both solids concentration and sludge bed height (interface) over time are measured and compared. The method incorporates uncertainty analysis using Monte Carlo regression, DIRECT (dividing rectangles), and Newton optimisation. It was identified that a double Vesilind (Takacs) model was most effective in the dilute regime (<1%v/v), but could not effectively fit high solids concentrations (>1%v/v) without a substantial (50%) decrease in effective maximum sedimentation velocity (V0). Other parameters (Rh, Rp) did not change. A power law velocity model (Diehl) was significantly less predictive at low concentrations, and not significantly better at higher concentrations. The optimised model (with reduction in V0) was tested vs a standard (optimised) double Vesilind velocity model in a simple primary sedimentation unit, and resulted in deviation from -12% to +18% in solids capture prediction from underload to overload (washout) conditions, indicating that the effect is important in CFD based analysis of these systems.


Subject(s)
Sewage , Wastewater , Monte Carlo Method , Pressure , Waste Disposal, Fluid/methods
18.
Mol Carcinog ; 61(5): 439-453, 2022 05.
Article in English | MEDLINE | ID: mdl-35107186

ABSTRACT

l-fucose is a dietary sugar that is used by cells in a process called fucosylation to posttranslationally modify and regulate protein behavior and function. As fucosylation plays essential cellular functions in normal organ and immune developmental and homeostasis, it is perhaps not surprising that it has been found to be perturbed in a number of pathophysiological contexts, including cancer. Increasing studies over the years have highlighted key roles that altered fucosylation can play in cancer cell-intrinsic as well as paracrine signaling and interactions. In particular, studies have demonstrated that fucosylation impact tumor:immunological interactions and significantly enhance or attenuate antitumor immunity. Importantly, fucosylation appears to be a posttranslational modification that can be therapeutically targeted, as manipulating the molecular underpinnings of fucosylation has been shown to be sufficient to impair or block tumor progression and to modulate antitumor immunity. Moreover, the fucosylation of anticancer agents, such as therapeutic antibodies, has been shown to critically impact their efficacy. In this review, we summarize the underappreciated roles that fucosylation plays in cancer and immune cells, as well as the fucosylation of therapeutic antibodies or the manipulation of fucosylation and their implications as new therapeutic modalities for cancer.


Subject(s)
Fucose , Neoplasms , Fucose/metabolism , Glycosylation , Humans , Immunotherapy , Neoplasms/therapy , Sugars
19.
ACS Omega ; 7(1): 786-792, 2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35036745

ABSTRACT

Organic-inorganic hybrid materials are a promising class of materials for tissue engineering and other biomedical applications. In this systematic study, the effect of the polymer molecular mass (MM) with a linear architecture on hybrid mechanical properties is reported. Well-defined linear poly(methyl methacrylate-co-(3-(trimethoxysilyl)propyl methacrylate)) polymers with a range of MMs of 9 to 90 kDa and one 90 kDa star-shaped polymer were synthesized and then used to form glass-polymer hybrids. It was demonstrated that increasing linear polymer MM decreases the resultant hybrid mechanical strength. Furthermore, a star-polymer hybrid was synthesized as a comparison and demonstrated significantly different mechanical properties relative to its linear-polymer counterpart.

20.
Sci Total Environ ; 812: 152592, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34954184

ABSTRACT

The classic Wells-Riley model is widely used for estimation of the transmission risk of airborne pathogens in indoor spaces. However, the predictive capability of this zero-dimensional model is limited as it does not resolve the highly heterogeneous spatiotemporal distribution of airborne pathogens, and the infection risk is poorly quantified for many pathogens. In this study we address these shortcomings by developing a novel spatiotemporally resolved Wells-Riley model for prediction of the transmission risk of different COVID-19 variants in indoor environments. This modelling framework properly accounts for airborne infection risk by incorporating the latest clinical data regarding viral shedding by COVID-19 patients and SARS-CoV-2 infecting human cells. The spatiotemporal distribution of airborne pathogens is determined via computational fluid dynamics (CFD) simulations of airflow and aerosol transport, leading to an integrated model of infection risk associated with the exposure to SARS-CoV-2, which can produce quantitative 3D infection risk map for a specific SARS-CoV-2 variant in a given indoor space. Application of this model to airborne COVID-19 transmission within a hospital ward demonstrates the impact of different virus variants and respiratory PPE upon transmission risk. With the emergence of highly contagious SARS-CoV-2 variants such as the Delta and Omicron strains, respiratory PPE alone may not provide effective protection. These findings suggest a combination of optimal ventilation and respiratory PPE must be developed to effectively control the transmission of COVID-19 in healthcare settings and indoor spaces in general. This generalised risk estimation framework has the flexibility to incorporate further clinical data as such becomes available, and can be readily applied to consider a wide range of factors that impact transmission risk, including location and movement of infectious persons, virus variant and stage of infection, level of PPE and vaccination of infectious and susceptible individuals, impacts of coughing, sneezing, talking and breathing, and natural and mechanised ventilation and filtration.


Subject(s)
COVID-19 , SARS-CoV-2 , Aerosols , Humans , Ventilation
SELECTION OF CITATIONS
SEARCH DETAIL