Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 21(23)2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33255528

ABSTRACT

Activation of TLR7 by small imidazoquinoline molecules such as R848 or R837 initiates signaling cascades leading to the activation of transcription factors, such as AP-1, NF-κB, and interferon regulatory factors (IRFs) and afterward to the induction of cytokines and anti-viral Type I IFNs. In general, TLRs mediate these effects by utilizing different intracellular signaling molecules, one of them is Mal. Mal is a protein closely related to the antibacterial response, and its role in the TLR7 pathways remains poorly understood. In this study, we show that Mal determines the expression and secretion of IFNß following activation of TLR7, a receptor that recognizes ssRNA and imidazoquinolines. Moreover, we observed that R848 induces Mal-dependent IFNß production via ERK1/2 activation as well as the transcription factor IRF7 activation. Although activation of TLR7 leads to NF-κB-dependent expression of IRF7, this process is independent of Mal. We also demonstrate that secretion of IFNß regulated by TLR7 and Mal in macrophages and dendritic cells leads to the IP-10 chemokine expression. In conclusion, our data demonstrate that Mal is a critical regulator of the imidazoquinolinones-dependent IFNß production via ERK1/2/IRF7 signaling cascade which brings us closer to understanding the molecular mechanism's regulation of innate immune response.


Subject(s)
Interferon Regulatory Factor-7/genetics , Interferon-beta/genetics , Membrane Glycoproteins/genetics , Myelin and Lymphocyte-Associated Proteolipid Proteins/genetics , Toll-Like Receptor 7/genetics , Animals , Cytokines/genetics , Humans , Immunity, Innate/genetics , Interferon Type I/genetics , MAP Kinase Signaling System/genetics , Mice , Mice, Knockout , NF-kappa B/genetics , Quinolones/toxicity , Transcription Factor AP-1/genetics
2.
J Innate Immun ; 12(5): 387-398, 2020.
Article in English | MEDLINE | ID: mdl-31851971

ABSTRACT

Innate immune response is a universal mechanism against invading pathogens. Toll-like receptors (TLRs), being part of a first line of defense, are responsible for detecting a variety of microorganisms. Among them TLR9, which is localized in endosomes, acts as a sensor for unmethylated CpG motifs present in bacteria, DNA viruses (e.g., HSV-1), or fungi. TLRs differ from one another by the use of accessory proteins. MyD88 adapter-like (Mal) adapter molecule is considered a positive regulator of TLR2- and TLR4-dependent pathways. It has been reported that this adapter may also negatively control signal transduction induced by TLR3 anchored in the endosome membrane. So far, the role of Mal adapter protein in the TLR9 signaling pathways has not been clarified. We show for the first time that Mal is engaged in TLR9-de-pendent expression of genes encoding IFNß and TNFα in HSV-1-infected or CpG-C-treated macrophages and requires a noncanonical NF-κB pathway. Moreover, using inhibitor of ERK1/2 we confirmed involvement of these kinases in TLR9-dependent induction of IFNß and TNFα. Our study points to a new role of Mal in TLR9 signaling through a hitherto unknown mechanism whereby lack of Mal specifically impairs ERK1/2-mediated induction of noncanonical NF-κB pathway and concomitant IFNß and TNFα production.


Subject(s)
Herpesvirus 1, Human/physiology , Interferon-beta/metabolism , Macrophages/metabolism , Membrane Glycoproteins/metabolism , Receptors, Interleukin-1/metabolism , Toll-Like Receptor 9/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Humans , Macrophages/virology , Membrane Glycoproteins/deficiency , Mice , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , NF-kappa B/metabolism , Phosphorylation , Receptors, Interleukin-1/deficiency , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL