Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Tree Physiol ; 35(9): 936-48, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26232786

ABSTRACT

Narrowleaf cottonwood (Populus angustifolia James) is an obligate riparian poplar that is a foundation species in river valleys along the Rocky Mountains, spanning 16° of latitude from southern Arizona, USA to southern Alberta, Canada. Its current distribution is fragmented, and genetic variation shows regional population structure consistent with the effects of geographic barriers and past climate. It is thus very well-suited for investigating ecophysiological adaptation associated with latitude. In other section Tacamahaca poplar species, genotypes from higher latitudes show evidence of short-season adaptation with foliar traits that contribute to higher photosynthetic capacity. We tested for similar adaptation in three populations of narrowleaf cottonwoods: from Arizona (south), Alberta (north) and Utah, near the centre of the latitudinal distribution. We propagated 20 genotypes from each population in a common garden in Alberta, and measured foliar and physiological traits after 3 years. Leaves of genotypes from the northern population had higher leaf mass per area (LMA), increased nitrogen (N) content and higher carotenoid and chlorophyll content, and these were associated with higher light-saturated net photosynthesis (Asat). In leaves of all populations the majority of stomata were abaxial, with the proportion of abaxial stomata highest in the southern population. Stomatal conductance (gs) and transpiration rates were higher in the northern population but water-use efficiency (Asat/gs) and leaf carbon isotope composition (δ(13)C) did not differ across the populations. These results (i) establish links between Asat and gs, N, chlorophyll and LMA among populations within this species, (ii) are consistent with the discrimination of populations from prior investigation of genetic variation and (iii) support the concept of latitudinal adaptation, whereby deciduous trees from higher latitudes display higher photosynthetic capacity, possibly compensating for a shorter and cooler growth season and reduced insolation.


Subject(s)
Altitude , Gases/metabolism , Photosynthesis/physiology , Plant Leaves/physiology , Populus/physiology , Carotenoids/metabolism , Chlorophyll/metabolism , Chlorophyll A , Climate , Geography , Light , Linear Models , Plant Stomata/physiology , United States , Water
2.
Plant Cell Environ ; 36(5): 984-93, 2013 May.
Article in English | MEDLINE | ID: mdl-23131183

ABSTRACT

To investigate climatic influence on floodplain trees, we analysed interannual correspondences between the Pacific Decadal Oscillation (PDO), river and groundwater hydrology, and growth and wood (13)C discrimination (Δ(13)C) of narrowleaf cottonwoods (Populus angustifolia) in a semi-arid prairie region. From the Rocky Mountain headwaters, river discharge (Q) was coordinated with the PDO (1910-2008: r(2) = 0.46); this pattern extended to the prairie and was amplified by water withdrawal for irrigation. Floodplain groundwater depth was correlated with river stage (r(2) = 0.96), and the cottonwood trunk basal area growth was coordinated with current- and prior-year Q (1992-2008: r(2) = 0.51), increasing in the mid-1990s, and decreasing in 2000 and 2001. Annual Δ(13)C decreased during low-flow years, especially in trees that were higher or further from the river, suggesting drought stress and stomatal closure, and male trees were more responsive than females (-0.86 versus -0.43‰). With subsequently increased flows, Δ(13)C increased and growth recovered. This demonstrated the linkages between hydroclimatic variation and cottonwood ecophysiology, and we conclude that cottonwoods will be vulnerable to drought from declining river flows due to water withdrawal and climate change. Trees further from the river could be especially affected, leading to narrowing of floodplain forests along some rivers.


Subject(s)
Climate , Populus/physiology , Rivers , Wood/physiology , Conservation of Natural Resources/methods , Droughts , Groundwater , Hydrology/methods , Linear Models , Plant Stomata/physiology , Stress, Physiological , Water Movements
3.
Funct Plant Biol ; 39(1): 25-37, 2012 Feb.
Article in English | MEDLINE | ID: mdl-32480757

ABSTRACT

Drought frequency and intensity are expected to increase in the Mediterranean as a consequence of global climate change. To understand how photosynthetic capacity responds to long-term water stress, we measured seasonal patterns of stomatal (SL), mesophyll (MCL) and biochemical limitations (BL) to net photosynthesis (Amax) in three Quercus ilex (L.) populations from sites differing in annual rainfall. In the absence of water stress, stomatal conductance (gs), maximum carboxylation capacity (Vcmax), photosynthetic electron transport rate (Jmax) and Amax were similar among populations. However, as leaf predawn water potential (Ψl,pd) declined, the population from the wettest site showed steeper declines in gs, Vcmax, Jmax and Amax than those from the drier sites. Consequently, SL, MCL and BL increased most steeply in response to decreasing Ψl,pd in the population from the wettest site. The higher sensitivity of Amax to drought was primarily the result of stronger stomatal regulation of water loss. Among-population differences were not observed when gs was used instead of Ψl,pd as a drought stress indicator. Given that higher growth rates, stature and leaf area index were observed at the wettest site, we speculate that hydraulic architecture may explain the greater drought sensitivity of this population. Collectively, these results highlight the importance of considering among-population differences in photosynthetic responses to seasonal drought in large scale process-based models of forest ecosystem function.

4.
Tree Physiol ; 30(12): 1479-88, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21081653

ABSTRACT

Cottonwoods, riparian poplars, are dioecious and prior studies have indicated that female poplars and willows can be more abundant than males in low-elevation zones, which are occasionally flooded. We investigated the response to flooding of clonal saplings of 12 male and 9 female narrowleaf cottonwoods (Populus angustifolia) grown for 15 weeks in a greenhouse, along with three females of a co-occurring native hybrid (Populus × jackii = Populus deltoides × Populus balsamifera). Three water-level treatments were provided, with substrate inundation as the flood treatment. In the non-flooded condition, the hybrids produced about four-fold more dry weight (DW) than the narrowleaf cottonwoods (P < 0.01). In both cottonwood taxa, flooding reduced stem height and DW, root and leaf area and weight, leaf chlorophyll and stomatal conductance (all P < 0.01). Inundation increased the foliar carbon-to-nitrogen ratio (+11%; P < 0.05) but did not significantly alter leaf water potential (mean -1.5 MPa), or foliar δ(13)C, which was lower in P. angustifolia (-32.8‰) than P. × jackii (-31.5‰; P < 0.05). Water level influenced the root distribution as roots were sparse in the saturated substrate and abundant in the capillary fringe above. The male and female P. angustifolia genotypes grew similarly with the favorable water levels, but the males tended to be more inhibited by flooding. Sapling DW of males was reduced by 56% compared with a 44% reduction for females (P = 0.1), and there were similar lower reductions for leaf, stem and root DW in females. These results demonstrate the inundation response of floodplain trees and suggest relative flood tolerance as: P. angustifolia female > P. angustifolia male > P. × jackii female. This indicates that narrowleaf cottonwoods are relatively flood tolerant and suggests that females are more flood tolerant than males. We propose the concept of 'strategic positioning', whereby the seed-producing females could be better adapted to naturally flooded, low-elevation streamside zones where seedling recruitment generally occurs.


Subject(s)
Populus/genetics , Populus/physiology , Ecosystem , Floods , Genotype , Hybridization, Genetic , Plant Leaves/physiology , Plant Roots/physiology , Plant Stems/growth & development
5.
Plant Cell Environ ; 33(11): 1898-910, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20561253

ABSTRACT

Global climate change is expected to result in more frequent and intense droughts in the Mediterranean region. To understand forest response to severe drought, we used a mobile rainfall shelter to examine the impact of spring and autumn rainfall exclusion on stomatal (S(L) ) and non-stomatal (NS(L) ) limitations of photosynthesis in a Quercus ilex ecosystem. Spring rainfall exclusion, carried out during increasing atmospheric demand and leaf development, had a larger impact on photosynthesis than autumn exclusion, conducted at a time of mature foliage and decreasing vapour pressure deficit. The relative importance of NS(L) increased with drought intensity. S(L) and NS(L) were equal once total limitation (T(L) ) reached 60%, but NS(L) greatly exceeded S(L) during severe drought, with 76% NS(L) partitioned equally between mesophyll conductance (MC(L) ) and biochemical (B(L) ) limitations when T(L) reached 100%. Rainfall exclusion altered the relationship between leaf water potential and photosynthesis. In response to severe mid-summer drought stress, A(n) and V(cmax) were 75% and 72% lower in the spring exclusion plot than in the control plot at the same pre-dawn leaf water potential. Our results revealed changes in the relationship between photosynthetic parameters and water stress that are not currently included in drought parameterizations for modelling applications.


Subject(s)
Droughts , Plant Leaves/physiology , Quercus/physiology , Water/physiology , Ecosystem , France , Mediterranean Region , Photosynthesis , Plant Stomata/physiology , Seasons , Trees/physiology
6.
Photosynth Res ; 104(1): 31-9, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20013353

ABSTRACT

The narrowleaf cottonwood, Populus angustifolia, occurs in occasionally flooded, low elevation zones along river valleys near the North American Rocky Mountains. This small poplar has narrow leaves and fine branching and thus resembles willows, which are commonly flood-tolerant. We investigated the flood response of narrowleaf cottonwoods and a related native hybrid, jackii cottonwood (P. x jackii = P. balsamifera x P. deltoides), by studying saplings of 24 clones in a greenhouse, with some pots being inundated to provide the flood treatment. Flooding slightly reduced leaf numbers (-10%), and leaf sizes were reduced by about 21% in female P. angustifolia versus a 50% reduction in the female hybrids. Flooding-reduced stomatal conductance and net photosynthetic rate, and reduced transpiration particularly in P. x jackii. The effects on foliar gas exchange declined over a 5-week interval, suggesting compensation. The moderate impact of flooding supports the hypothesis that narrowleaf cottonwoods are flood-tolerant, and we anticipate that these trees could provide traits to increase the flood tolerance of fast-growing hybrid poplars. The results further indicate that female cottonwoods may be more flood-tolerant than males, and females could be more successful in lower, flood-prone sites.


Subject(s)
Photosynthesis/physiology , Plant Leaves/growth & development , Plant Transpiration/physiology , Populus/physiology , Carbon Dioxide/metabolism , Floods , Plant Leaves/anatomy & histology , Water/metabolism
7.
Tree Physiol ; 28(7): 1037-48, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18450568

ABSTRACT

Cottonwoods (Populus spp.) are dioecious phreatophytes of hydrological and ecological importance in riparian woodlands throughout the Northern Hemisphere. In streamside zones of southern Alberta, groundwater and soil water typically decline between May and September. To understand how narrowleaf cottonwoods (Populus angustifolia James) are adapted to this seasonal decrease in water availability, we measured photosynthetic gas exchange, leaf reflectance, chlorophyll fluorescence and stable carbon isotope composition (delta(13)C) in trees growing in the Oldman River valley of southern Alberta during the 2006 growth season. Accompanying the seasonal recession in river flow, groundwater table depth (Z(gw)) declined by 1.6 m, but neither mean daily light-saturated net photosynthetic rate (A(max)) nor stomatal conductance (g(s)) was correlated with this change. Both A(max) and g(s) followed a parabolic seasonal pattern, with July 24 maxima of 15.8 micromol m(-2) s(-1) and 559 mmol m(-2) s(-1), respectively. The early summer rise in A(max) was related to an increase in the chlorophyll pool during leaf development. Peak A(max) coincided with the maximum quantum efficiency of Photosystem II (F(v)/F(m)), chlorophyll index (CI) and scaled photochemical reflectance index (sPRI), but occurred one month after maximum volumetric soil water (theta(v)) and minimum Z(gw). In late summer, A(max) decreased by 30-40% from maximum values, in weak correlation with theta(v) (r(2) = 0.50). Groundwater availability limited late-season water stress, so that there was little variation in mean daily transpiration (E). Decreasing leaf nitrogen (% dry mass), CI, F(v)/F(m) and normalized difference vegetation index (NDVI) were also consistent with leaf aging effects. There was a strong correlation between A(max) and g(s) (r(2) = 0.89), so that photosynthetic water-use efficiency (WUE; A(max)/E) decreased logarithmically with increasing vapor pressure deficit in both males (r(2) = 0.75) and females (r(2) = 0.95). The male:female ratio was unequal (2:1, chi(2) = 16.5, P < 0.001) at the study site, but we found no significant between-sex differences in photosynthetic gas exchange, leaf reflectance or chlorophyll fluorescence that might explain the unequal ratio. Females tended to display lower NDVI than males (P = 0.07), but mean WUE did not differ significantly between males and females (2.1 +/- 0.2 versus 2.5 +/- 0.2 mmol mol(-1)), and delta(13)C remained in the -28.8 to -29.3 per thousand range throughout the growth season, in both sexes. These results demonstrate changes in photosynthetic and water-use characteristics that collectively enable vigorous growth throughout the season, despite seasonal changes in water supply and demand.


Subject(s)
Photosynthesis/physiology , Plant Leaves/physiology , Populus/physiology , Seasons , Alberta , Carbon Isotopes , Chlorophyll/metabolism , Ecosystem , Plant Leaves/metabolism , Populus/metabolism , Trees/metabolism , Trees/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...