Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
BMJ Open ; 14(9): e078231, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39266308

ABSTRACT

INTRODUCTION: In rheumatoid arthritis (RA), immunosuppressive therapies may achieve symptomatic relief, but do not induce long-term, drug-free remission. Meanwhile, the lifelong use of immunosuppressive drugs confers increased risk for malignancy and infections. As such, there is an unmet need for novel treatments that selectively target the pathogenic immune response in RA by inducing tolerance to autoantigens. Autologous cell therapy using antigen-loaded tolerogenic dendritic cells (tolDCs) aims to reinstate autoantigen-specific immunological tolerance in RA and could potentially meet this need. METHODS AND ANALYSIS: We report here the design of the phase I/II, investigator-initiated, open-label, dose-escalation trial TOLERANT. In this study, we will evaluate the intranodal administration of tolDCs in patients with RA that are in remission under immunosuppressive therapy. The tolDCs in this trial are loaded with the heat shock protein 70-derived peptide mB29a, which is an effective surrogate autoantigen in animal models of arthritis. Within this study, three dose-escalation cohorts (two intranodal injections of 5×106, 10×106 and 15×106 tolDCs), each consisting of three patients, are evaluated to identify the highest safe dose (recommended dose), and an extension cohort of nine patients will be treated with the recommended dose. The (co-)primary endpoints of this study are safety and feasibility, which we assess by the number of AEs and the successful production of tolDCs. The secondary endpoints include the immunological effects of the treatment, which we assess with a variety of high-dimensional and antigen-specific immunological assays. Clinical effects are exploratory outcomes. ETHICS AND DISSEMINATION: Ethical approval for this study has been obtained from the Netherlands Central Committee on Research Involving Human Subjects. The outcomes of the trial will be disseminated through publications in open-access, peer-reviewed scientific journals, scientific conferences and to patient associations. TRIAL REGISTRATION NUMBERS: NCT05251870; 2019-003620-20 (EudraCT); NL71296.000.20 (CCMO register).


Subject(s)
Arthritis, Rheumatoid , Autoantigens , Dendritic Cells , Humans , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/therapy , Dendritic Cells/immunology , Autoantigens/immunology , Immune Tolerance , HSP70 Heat-Shock Proteins/immunology , Male , Female , Clinical Trials, Phase I as Topic , Adult , Middle Aged , Clinical Trials, Phase II as Topic , Transplantation, Autologous
2.
Curr Clin Pharmacol ; 15(2): 152-163, 2020.
Article in English | MEDLINE | ID: mdl-31625480

ABSTRACT

BACKGROUND: 2-iminobiotin (2-IB) is an investigational neuroprotective agent in development for the reduction of brain cell injury after cerebral hypoxia-ischemia. OBJECTIVE: The present first-in-human study evaluated the safety, tolerability, pharmacokinetics (PK) and -dynamics (PD) of 2-IB in healthy male subjects, intravenously infused with or without Captisol® as a solubilizing agent. METHODS: This randomized, double-blind, placebo-controlled, dose-escalation study was executed in 2 groups of 9 healthy male subjects. A single dose of 2-IB 0.6 mg/kg or placebo was infused over periods between 15 min and 4 h, and repeated doses escalating from 0.6 mg/kg to 12 mg/kg, or placebo were infused every 4 h for 6 administrations in total. RESULTS: Single and multiple doses of 2-IB up to 6 doses of 6 mg/kg with and without Captisol® were safe and well-tolerated in healthy male subjects. 2-IB proved to be a high-clearance drug with a volume of distribution slightly exceeding total body water volume, and with linear PK that appeared not to be affected by the presence of Captisol®. CONCLUSION: Sulfobutyletherbeta-cyclodextrin (SBECD) in Captisol® had a low-clearance profile with a small volume of distribution, with time-independent PK. Preliminary PD characterization of repeated iv dosing of 2-IB in an acute peripheral hypoxic ischemia model in healthy subjects did not reveal any notable effects of 2-IB, noting that this model was not selected to guide efficacy in the currently pursued indication of cerebral hypoxia-ischemia.


Subject(s)
Biotin/analogs & derivatives , Excipients/chemistry , Neuroprotective Agents/administration & dosage , beta-Cyclodextrins/chemistry , Adolescent , Adult , Biotin/administration & dosage , Biotin/adverse effects , Biotin/pharmacokinetics , Dose-Response Relationship, Drug , Double-Blind Method , Humans , Hypoxia-Ischemia, Brain/drug therapy , Infusions, Intravenous , Male , Middle Aged , Neuroprotective Agents/adverse effects , Neuroprotective Agents/pharmacokinetics , Time Factors , Tissue Distribution , Young Adult
3.
Int J Cardiovasc Imaging ; 35(7): 1327-1337, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30847659

ABSTRACT

This study was performed to evaluate the feasibility of intra-procedural visualization of optimal pacing sites and image-guided left ventricular (LV) lead placement in cardiac resynchronization therapy (CRT). In fifteen patients (10 males, 68 ± 11 years, 7 with ischemic cardiomyopathy and ejection fraction of 26 ± 5%), optimal pacing sites were identified pre-procedurally using cardiac imaging. Cardiac magnetic resonance (CMR) derived scar and dyssynchrony maps were created for all patients. In six patients the anatomy of the left phrenic nerve (LPN) and coronary sinus ostium was assessed via a computed tomography (CT) scan. By overlaying the CMR and CT dataset onto live fluoroscopy, aforementioned structures were visualized during LV lead implantation. In the first nine patients, the platform was tested, yet, no real-time image-guidance was implemented. In the last six patients real-time image-guided LV lead placement was successfully executed. CRT implant and fluoroscopy times were similar to previous procedures and all leads were placed close to the target area but away from scarred myocardium and the LPN. Patients that received real-time image-guided LV lead implantation were paced closer to the target area compared to patients that did not receive real-time image-guidance (8 mm [IQR 0-22] vs 26 mm [IQR 17-46], p = 0.04), and displayed marked LV reverse remodeling at 6 months follow up with a mean LVESV change of -30 ± 10% and a mean LVEF improvement of 15 ± 5%. Real-time image-guided LV lead implantation is feasible and may prove useful for achieving the optimal LV lead position.


Subject(s)
Cardiac Resynchronization Therapy Devices , Cardiac Resynchronization Therapy , Cardiomyopathies/therapy , Heart Ventricles/diagnostic imaging , Magnetic Resonance Imaging, Cine , Magnetic Resonance Imaging, Interventional/methods , Multidetector Computed Tomography , Multimodal Imaging/methods , Radiography, Interventional/methods , Aged , Cardiomyopathies/diagnostic imaging , Cardiomyopathies/physiopathology , Equipment Design , Feasibility Studies , Female , Heart Ventricles/physiopathology , Humans , Male , Middle Aged , Myocardial Ischemia/complications , Myocardial Ischemia/diagnostic imaging , Myocardial Ischemia/physiopathology , Predictive Value of Tests , Prospective Studies , Radiographic Image Interpretation, Computer-Assisted , Recovery of Function , Time Factors , Treatment Outcome , Ventricular Function, Left , Ventricular Remodeling
4.
Front Immunol ; 10: 279, 2019.
Article in English | MEDLINE | ID: mdl-30873163

ABSTRACT

Technologies that enable induction of therapeutic tolerance may revolutionize the treatment of autoimmune diseases by their supposed potential to induce drug-free and lasting disease remission. In combination with diagnostic tests that screen for individuals at risk, these approaches may offer chances to halt disease before serious damage in the tissues can occur. In fact, for healthy individuals at risk, this could lead to a preventive form of vaccination. For therapeutic tolerance to re-instate natural self-tolerance it seems essential to induce tolerance for the critical autoantigens involved in disease. However, for most autoimmune diseases such antigens are poorly defined. This is the case for both disease inciting autoantigens and antigens that become involved through epitope spreading. A possible source of surrogate auto-antigens expressed in tissues during inflammation are heat shock proteins (HSP) or stress proteins. In this mini-review we discuss unique characteristics of HSP which provide them with the capacity to inhibit inflammatory processes. Various studies have shown that epitopes of HSP60 and HSP70 molecules can function as vaccines to downregulate a variety of autoimmune inflammatory diseases. Currently, several research groups are developing cell therapies with the intention to reach therapeutic tolerance. In this review, in which we are proposing to ex vivo load tolerant dendritic cells with a Treg inducing HSP70 derived peptide called B29, we are discussing the chances to develop this as an autologous tolDC therapeutic tolerance therapy for rheumatoid arthritis.


Subject(s)
Arthritis, Rheumatoid/therapy , Autoantigens/immunology , Heat-Shock Proteins/immunology , Immune Tolerance , Adoptive Transfer , Animals , Arthritis, Rheumatoid/immunology , Dendritic Cells/immunology , Humans , T-Lymphocytes, Regulatory/immunology
5.
Front Immunol ; 8: 1690, 2017.
Article in English | MEDLINE | ID: mdl-29250070

ABSTRACT

Disease suppressive T cell regulation may depend on cognate interactions of regulatory T cells with self-antigens that are abundantly expressed in the inflamed tissues. Heat shock proteins (HSPs) are by their nature upregulated in stressed cells and therefore abundantly present as potential targets for such regulation. HSP immunizations have led to inhibition of experimentally induced inflammatory conditions in various models. However, re-establishment of tolerance in the presence of an ongoing inflammatory process has remained challenging. Since tolerogenic DCs (tolDCs) have the combined capacity of mitigating antigen-specific inflammatory responses and of endowing T cells with regulatory potential, it seems attractive to combine the anti-inflammatory qualities of tolDCs with those of HSPs.

6.
Biochem Pharmacol ; 65(6): 1007-15, 2003 Mar 15.
Article in English | MEDLINE | ID: mdl-12623133

ABSTRACT

Inhibitors of mast cell tryptase and chymase can be effective as mast cell stabilising compounds. Lactoferrin has been reported to inhibit tryptase activity, but its actions on other serine proteases of mast cells and its potential to alter mast cell function are not known. We have examined the ability of lactoferrin to inhibit mast cell tryptase, chymase and cathepsin G, and investigated its potential to modulate the activation of human mast cells. Enzymatically dispersed cells from human skin, lung and tonsil were challenged with anti-IgE or calcium ionophore A23187, following incubation with recombinant human lactoferrin, and histamine release determined. IgE-dependent histamine release from skin mast cells was inhibited by up to 50% following incubation with lactoferrin (50 or 500 nM). Tonsil mast cells were also stabilised by lactoferrin, but not those from lung. Calcium ionophore A23187-induced histamine release was not altered by lactoferrin. A double-labelling immunocytochemical procedure revealed the presence of lactoferrin in 4-6% of mast cells, and this proportion increased to 40% following incubation with lactoferrin. Lactoferrin did not inhibit cleavage of synthetic substrates by tryptase and chymase directly, though it was able to diminish the ability of heparin to stabilise tryptase. Cathepsin G activity was inhibited by lactoferrin. The ability of lactoferrin to inhibit IgE-dependent activation of human mast cells and modulate protease activity suggests that the release of this neutrophil product may have a role in the downregulation of allergic inflammation.


Subject(s)
Cathepsins/metabolism , Lactoferrin/pharmacology , Mast Cells/drug effects , Serine Endopeptidases/metabolism , Cathepsin G , Chymases , Enzyme Stability/drug effects , Heparin/pharmacology , Histamine/metabolism , Humans , Immunohistochemistry , Mast Cells/enzymology , Neutrophils/chemistry , Tryptases
SELECTION OF CITATIONS
SEARCH DETAIL