Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Biomedicines ; 12(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38790945

ABSTRACT

Chemerin acts as both a chemotactic agent and an adipokine that undergoes proteolytic cleavage, converting inactive precursors into their active forms before being subsequently inactivated. Elevated chemerin levels are linked to obesity and type 2 diabetes mellitus (T2D). This study aimed to elucidate the effects of T2D and obesity on chemerin levels by comparing plasma samples from individuals with a normal weight and T2D (BMI < 25; NWD group n = 22) with those from individuals who are overweight or obese and have T2D (BMI ≥ 25; OWD group n = 39). The total chemerin levels were similar in the NWD and OWD groups, suggesting that T2D may equalize the chemerin levels irrespective of obesity status. The cleavage of chemerin has been previously linked to myocardial infarction and stroke in NWD, with potential implications for inflammation and mortality. OWD plasma exhibited lower levels of cleaved chemerin than the NWD group, suggesting less inflammation in the OWD group. Here, we showed that the interaction between obesity and T2D leads to an equalization in the total chemerin levels. The cleaved chemerin levels and the associated inflammatory state, however, differ significantly, underscoring the complex relationship between chemerin, T2D, and obesity.

2.
Biomedicines ; 12(4)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38672278

ABSTRACT

Chemerin is a chemokine/adipokine, regulating inflammation, adipogenesis and energy metabolism whose activity depends on successive proteolytic cleavages at its C-terminus. Chemerin levels and processing are correlated with insulin resistance. We hypothesized that chemerin processing would be higher in individuals with type 2 diabetes (T2D) and in those who are insulin resistant (IR). This hypothesis was tested by characterizing different chemerin forms by specific ELISA in the plasma of 18 participants with T2D and 116 without T2D who also had their insulin resistance measured by steady-state plasma glucose (SSPG) concentration during an insulin suppression test. This approach enabled us to analyze the association of chemerin levels with a direct measure of insulin resistance (SSPG concentration). Participants were divided into groups based on their degree of insulin resistance using SSPG concentration tertiles: insulin sensitive (IS, SSPG ≤ 91 mg/dL), intermediate IR (IM, SSPG 92-199 mg/dL), and IR (SSPG ≥ 200 mg/dL). Levels of different chemerin forms were highest in patients with T2D, second highest in individuals without T2D who were IR, and lowest in persons without T2D who were IM or IS. In the whole group, chemerin levels positively correlated with both degree of insulin resistance (SSPG concentration) and adiposity (BMI). Participants with T2D and those without T2D who were IR had the most proteolytic processing of chemerin, resulting in higher levels of both cleaved and degraded chemerin. This suggests that increased inflammation in individuals who have T2D or are IR causes more chemerin processing.

3.
J Thromb Haemost ; 20(5): 1256-1270, 2022 05.
Article in English | MEDLINE | ID: mdl-35108449

ABSTRACT

BACKGROUND: Osteopontin (OPN) is a multifunctional proinflammatory matricellular protein overexpressed in multiple human cancers and associated with tumor progression and metastases. Thrombin cleavage of OPN reveals a cryptic binding site for α4 ß1 and α9 ß1 integrins. METHODS: Thrombin cleavage-resistant OPNR153A knock-in (OPN-KI) mice were generated and compared to OPN deficient mice (OPN-KO) and wild type (WT) mice in their ability to support growth of melanoma cells. Flow cytometry was used to analyze tumor infiltrating leukocytes. RESULTS: OPN-KI mice engineered with a thrombin cleavage-resistant OPN had reduced B16 melanoma growth and fewer pulmonary metastases than WT mice. The tumor suppression phenotype of the OPN-KI mouse was identical to that observed in OPN-KO mice and was replicated in WT mice by pharmacologic inhibition of thrombin with dabigatran. Tumors isolated from OPN-KI mice had increased tumor-associated macrophages with an altered activation phenotype. Immunodeficient OPN-KI mice (NOG-OPN-KI) or macrophage-depleted OPN-KI mice did not exhibit the tumor suppression phenotype. As B16 cells do not express OPN, thrombin-cleaved fragments of host OPN suppress host antitumor immune response by functionally modulating the tumor-associated macrophages. YUMM3.1 cells, which express OPN, showed less tumor suppression in the OPN-KI and OPN-KO mice than B16 cells, but its growth was suppressed by dabigatran similar to B16 cells. CONCLUSIONS: Thrombin cleavage of OPN, derived from the host and the tumor, initiates OPN's tumor-promoting activity in vivo.


Subject(s)
Melanoma, Experimental , Thrombin , Animals , Cell Adhesion/genetics , Dabigatran , Humans , Mice , Osteopontin/chemistry , Osteopontin/genetics , Thrombin/metabolism
4.
J Thromb Haemost ; 20(1): 238-244, 2022 01.
Article in English | MEDLINE | ID: mdl-34626062

ABSTRACT

BACKGROUND: Kallikrein is generated when the contact system is activated, subsequently cleaving high molecular weight kininogen to bradykinin (BK). BK binds to bradykinin receptor 2, causing vascular leakage. BK is inactivated by proteolysis by the plasma carboxypeptidase B2 and N (CPB2 and CPN). CPN is constitutively active but CPB2 is generated from its zymogen, proCPB2. OBJECTIVES: Determine the role of CPB2 and CPN in the regulation of vascular leakage. METHODS: Mice deficient in CPB2, CPN, or both (Cpb2-/- , Cpn-/- , and Cpb2-/- /Cpn-/- ) were compared with wild-type mice (WT) in a model of vascular leakage caused by skin irritation. In some experiments, mice were pretreated with antibodies that prevent activation of proCPB2. RESULTS: Skin irritation increased vascular leakage most in Cpb2-/- /Cpn-/- , less in Cpb2-/- and Cpn-/- , and least in WT mice. There was no difference in vascular leakage without the challenge. Antibodies inhibiting activation of proCPB2 by plasmin, but not by the thrombin/thrombomodulin complex, increased vascular leakage to the level seen in Cpb2-/- mice. There was no change in levels of markers of coagulation and fibrinolysis. CONCLUSIONS: Bradykinin is inactivated by both CPB2 and CPN independently. Plasmin is the activator of proCPB2 in this model. Mice lacking both plasma carboxypeptidases have more vascular leak than those lacking either alone. Although BK levels were not determined, BK is the likely substrate for CPB2 and CPN in this model.


Subject(s)
Carboxypeptidase B2 , Animals , Carboxypeptidases/genetics , Fibrinolysin/metabolism , Fibrinolysis , Lysine Carboxypeptidase/genetics , Mice
5.
Cell ; 174(6): 1361-1372.e10, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30193110

ABSTRACT

A key aspect of genomic medicine is to make individualized clinical decisions from personal genomes. We developed a machine-learning framework to integrate personal genomes and electronic health record (EHR) data and used this framework to study abdominal aortic aneurysm (AAA), a prevalent irreversible cardiovascular disease with unclear etiology. Performing whole-genome sequencing on AAA patients and controls, we demonstrated its predictive precision solely from personal genomes. By modeling personal genomes with EHRs, this framework quantitatively assessed the effectiveness of adjusting personal lifestyles given personal genome baselines, demonstrating its utility as a personal health management tool. We showed that this new framework agnostically identified genetic components involved in AAA, which were subsequently validated in human aortic tissues and in murine models. Our study presents a new framework for disease genome analysis, which can be used for both health management and understanding the biological architecture of complex diseases. VIDEO ABSTRACT.


Subject(s)
Aortic Aneurysm, Abdominal/pathology , Genomics , Animals , Aortic Aneurysm, Abdominal/genetics , Area Under Curve , Disease Models, Animal , Gene Expression Regulation , Gene Regulatory Networks , Genome-Wide Association Study , Humans , Machine Learning , Mice , Polymorphism, Single Nucleotide , Protein Interaction Maps , ROC Curve , Whole Genome Sequencing
6.
PLoS One ; 13(8): e0202780, 2018.
Article in English | MEDLINE | ID: mdl-30161155

ABSTRACT

Chemerin is a chemoattractant involved in immunity as well as an adipokine, whose activity is regulated by successive proteolytic cleavages at its C-terminus. Chemerin's C-terminal sequence and its proteolytic cleavage sites are highly conserved between human and mouse, as well as in other species. We produced, purified and characterized different mouse chemerin forms. Ca2+ mobilization assay showed that the EC50 values for mchem161T and mchem157R were 135.8 ± 158 nM and 71.2 ± 55.4 nM, respectively, whereas mchem156S and mchem155F had a 20-fold higher potency with an EC50 of 4.6 ± 1.8 nM and 3.6 ± 3.0 nM, respectively, likely representing the two physiologically active forms of chemerin. No agonist activity was found for mchem154A. Similar results were obtained in a chemotaxis assay. To identify and quantify the in vivo mouse chemerin forms in biological samples, we developed specific ELISAs for mchem162K, mchem157R, mchem156S, mchem155F and mchem154A, using antibodies raised against peptides from the C-terminus of the different mouse chemerin forms. The prochemerin form, mchem162K, was the major chemerin form in plasma with its increase matching the increase of total plasma chemerin in obese mice. During the onset of obesity in high-fat diet fed mice, mchem156S was elevated in plasma. In contrast, mchem155F was the dominant form in epididymal fat extracts. Our study provides the first direct evidence that mouse chemerin undergoes extensive, dynamic and tissue-specific proteolytic processing in vivo, similar to human chemerin, underlining the importance of measuring individual chemerin forms in studies of chemerin biology in mouse models.


Subject(s)
Adipose Tissue/metabolism , Chemokines/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Adiponectin/analysis , Adiponectin/blood , Amino Acid Sequence , Animals , Chemokines/blood , Chemokines/genetics , Diet, High-Fat , Enzyme-Linked Immunosorbent Assay , Humans , Intercellular Signaling Peptides and Proteins/blood , Intercellular Signaling Peptides and Proteins/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Mutagenesis, Site-Directed , Proteolysis , Sequence Alignment
7.
Arthritis Res Ther ; 20(1): 132, 2018 07 04.
Article in English | MEDLINE | ID: mdl-29973268

ABSTRACT

BACKGROUND: Chemerin is a chemoattractant involved in immunity that also functions as an adipokine. Chemerin is secreted as an inactive precursor (chem163S), and its activation requires proteolytic cleavages at its C-terminus, involving proteases in coagulation, fibrinolysis, and inflammation. Previously, we found chem158K was the dominant chemerin form in synovial fluids from patients with arthritis. In this study, we aimed to characterize a distinct cleaved chemerin form, chem156F, in osteoarthritis (OA) and rheumatoid arthritis (RA). METHODS: Purified chem156F was produced in transfected CHO cells. To quantify chem156F in OA and RA samples, we developed a specific ELISA for chem156F using antibody raised against a peptide representing the C-terminus of chem156F. RESULTS: Ca2+ mobilization assays showed that the EC50 values for chem163S, chem156F, and chem157S were 252 ± 141 nM, 133 ± 41.5 nM, and 5.83 ± 2.48 nM, respectively. chem156F was more active than its precursor, chem163S, but very much less potent than chem157S, the most active chemerin form. Chymase was shown to be capable of cleaving chem163S at a relevant rate. Using the chem156F ELISA we found a substantial amount of chem156F present in synovial fluids from patients with OA and RA, 24.06 ± 5.51 ng/ml and 20.35 ± 5.19 ng/ml (mean ± SEM, n = 25) respectively, representing 20% of total chemerin in OA and 76.7% of chemerin in RA synovial fluids. CONCLUSIONS: Our data show that chymase cleavage of chem163S to partially active chem156F can be found in synovial fluids where it can play a role in modulation of the inflammation in joints.


Subject(s)
Arthritis, Rheumatoid/metabolism , Chemokines/metabolism , Chymases/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Osteoarthritis/metabolism , Protein Precursors/metabolism , Synovial Fluid/metabolism , Animals , CHO Cells , Chemokines/genetics , Cricetinae , Cricetulus , Enzyme-Linked Immunosorbent Assay , Humans , Intercellular Signaling Peptides and Proteins/genetics , Protein Isoforms/metabolism , Recombinant Proteins/metabolism
8.
J Biol Chem ; 289(39): 27146-27158, 2014 Sep 26.
Article in English | MEDLINE | ID: mdl-25112870

ABSTRACT

Thrombin cleavage alters the function of osteopontin (OPN) by exposing an integrin binding site and releasing a chemotactic C-terminal fragment. Here, we examined thrombin cleavage of OPN in the context of dendritic cell (DC) migration to define its functional domains. Full-length OPN (OPN-FL), thrombin-cleaved N-terminal fragment (OPN-R), thrombin- and carboxypeptidase B2-double-cleaved N-terminal fragment (OPN-L), and C-terminal fragment (OPN-CTF) did not have intrinsic chemotactic activity, but all potentiated CCL21-induced DC migration. OPN-FL possessed the highest potency, whereas OPNRAA-FL had substantially less activity, indicating the importance of RGD. We identified a conserved (168)RSKSKKFRR(176) sequence on OPN-FL that spans the thrombin cleavage site, and it demonstrated potent pro-chemotactic effects on CCL21-induced DC migration. OPN-FLR168A had reduced activity, and the double mutant OPNRAA-FLR168A had even lower activity, indicating that these functional domains accounted for most of the pro-chemotactic activity of OPN-FL. OPN-CTF also possessed substantial pro-chemotactic activity, which was fully expressed upon thrombin cleavage and its release from the intact protein, because OPN-CTF was substantially more active than OPNRAA-FLR168A containing the OPN-CTF sequence within the intact protein. OPN-R and OPN-L possessed similar potency, indicating that the newly exposed C-terminal SVVYGLR sequence in OPN-R was not involved in the pro-chemotactic effect. OPN-FL and OPN-CTF did not directly bind to the CD44 standard form or CD44v6. In conclusion, thrombin cleavage of OPN disrupts a pro-chemotactic sequence in intact OPN, and its loss of pro-chemotactic activity is compensated by the release of OPN-CTF, which assumes a new conformation and possesses substantial activity in enhancing chemokine-induced migration of DCs.


Subject(s)
Cell Movement/physiology , Dendritic Cells/metabolism , Monocyte Chemoattractant Proteins/metabolism , Osteopontin/metabolism , Proteolysis , Thrombin/metabolism , Amino Acid Motifs , Animals , Dendritic Cells/cytology , Humans , Hyaluronan Receptors/genetics , Hyaluronan Receptors/metabolism , Mice , Mice, Knockout , Monocyte Chemoattractant Proteins/genetics , Osteopontin/genetics , Thrombin/genetics
9.
PLoS One ; 8(8): e72392, 2013.
Article in English | MEDLINE | ID: mdl-24009678

ABSTRACT

Previously we have shown in a mouse model of bronchial asthma that thrombomodulin can convert immunogenic conventional dendritic cells into tolerogenic dendritic cells while inducing its own expression on their cell surface. Thrombomodulin(+) dendritic cells are tolerogenic while thrombomodulin(-) dendritic cells are pro-inflammatory and immunogenic. Here we hypothesized that thrombomodulin treatment of dendritic cells would modulate inflammatory gene expression. Murine bone marrow-derived dendritic cells were treated with soluble thrombomodulin and expression of surface markers was determined. Treatment with thrombomodulin reduces the expression of maturation markers and increases the expression of TM on the DC surface. Thrombomodulin treated and control dendritic cells were sorted into thrombomodulin(+) and thrombomodulin(-) dendritic cells before their mRNA was analyzed by microarray. mRNAs encoding pro-inflammatory genes and dendritic cells maturation markers were reduced while expression of cell cycle genes were increased in thrombomodulin-treated and thrombomodulin(+) dendritic cells compared to control dendritic cells and thrombomodulin(-) dendritic cells. Thrombomodulin-treated and thrombomodulin(+) dendritic cells had higher expression of 15-lipoxygenase suggesting increased synthesis of lipoxins. Thrombomodulin(+) dendritic cells produced more lipoxins than thrombomodulin(-) dendritic cells, as measured by ELISA, confirming that this pathway was upregulated. There was more phosphorylation of several cell cycle kinases in thrombomodulin(+) dendritic cells while phosphorylation of kinases involved with pro-inflammatory cytokine signaling was reduced. Cultures of thrombomodulin(+) dendritic cells contained more cells actively dividing than those of thrombomodulin(-) dendritic cells. Production of IL-10 is increased in thrombomodulin(+) dendritic cells. Antagonism of IL-10 with a neutralizing antibody inhibited the effects of thrombomodulin treatment of dendritic cells suggesting a mechanistic role for IL-10. The surface of thrombomodulin(+) dendritic cells supported activation of protein C and procarboxypeptidase B2 in a thrombomodulin-dependent manner. Thus thrombomodulin treatment increases the number of thrombomodulin(+) dendritic cells, which have significantly altered gene expression compared to thrombomodulin(-) dendritic cells in key immune function pathways.


Subject(s)
Antigens, Surface/genetics , Dendritic Cells/metabolism , Gene Expression Regulation , Thrombomodulin/genetics , Animals , Antigens, Surface/metabolism , Arachidonic Acid/metabolism , Biomarkers/metabolism , Carboxypeptidase B2/metabolism , Cell Cycle/genetics , Cell Differentiation , Cluster Analysis , Dendritic Cells/cytology , Dendritic Cells/drug effects , Gene Expression Profiling , Hemostasis/genetics , Humans , Immunophenotyping , Inflammation/genetics , Inflammation/metabolism , Interleukin-10/antagonists & inhibitors , Metabolic Networks and Pathways , Mice , MicroRNAs/genetics , Phosphorylation , Protein Binding , Protein C/metabolism , Thrombomodulin/metabolism
10.
Lab Chip ; 13(4): 722-9, 2013 Feb 21.
Article in English | MEDLINE | ID: mdl-23282651

ABSTRACT

We present the design and performance characteristics of a platelet analysis platform based on a microfluidic impedance cytometer. Dielectrophoretic focusing is used to centre cells in a fluid stream, which then forms the core of a two-phase flow (dielectric focusing). This flow then passes between electrodes for analysis by differential impedance spectroscopy at multiple frequencies from 280 kHz to 4 MHz. This approach increases the signal-to-noise ratio relative to a single-phase, unfocused stream, while minimising the shear forces to which the cells are subjected. The percentage of activated platelets before and after passage through the chip was measured using flow cytometry, and no significant change was measured. Measuring the in-phase amplitude at a single frequency is sufficient to distinguish platelets from erythrocytes. Using multi-frequency impedance measurements and discriminant analysis, resting platelets can be discriminated from activated platelets. This multifrequency impedance cytometer therefore allows ready determination of the degree of platelet activation in blood samples.


Subject(s)
Blood Platelets/chemistry , Flow Cytometry/methods , Microfluidic Analytical Techniques/methods , Electrodes , Flow Cytometry/instrumentation , Humans , Microfluidic Analytical Techniques/instrumentation
11.
J Biol Chem ; 288(5): 3097-111, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23204518

ABSTRACT

Osteopontin (OPN), which is highly expressed in malignant glioblastoma (GBM), possesses inflammatory activity modulated by proteolytic cleavage by thrombin and plasma carboxypeptidase B2 (CPB2) at a highly conserved cleavage site. Full-length OPN (OPN-FL) was elevated in cerebrospinal fluid (CSF) samples from all cancer patients compared with noncancer patients. However, thrombin-cleaved OPN (OPN-R) and thrombin/CPB2-double-cleaved OPN (OPN-L) levels were markedly increased in GBM and non-GBM gliomas compared with systemic cancer and noncancer patients. Cleaved OPN constituted ∼23 and ∼31% of the total OPN in the GBM and non-GBM CSF samples, respectively. OPN-R was also elevated in GBM tissues. Thrombin-antithrombin levels were highly correlated with cleaved OPN, but not OPN-FL, suggesting that the cleaved OPN fragments resulted from increased thrombin and CPB2 in this extracellular compartment. Levels of VEGF and CCL4 were increased in CSF of GBM and correlated with the levels of cleaved OPN. GBM cell lines were more adherent to OPN-R and OPN-L than OPN-FL. Adhesion to OPN altered gene expression, in particular genes involved with cellular processes, cell cycle regulation, death, and inflammation. OPN and its cleaved forms promoted motility of U-87 MG cells and conferred resistance to apoptosis. Although functional mutation of the RGD motif in OPN largely abolished these functions, OPN(RAA)-R regained significant cell binding and signaling function, suggesting that the SVVYGLR motif in OPN-R may substitute for the RGD motif if the latter becomes inaccessible. OPN cleavage contributes to GBM development by allowing more cells to bind in niches where they acquire anti-apoptotic properties.


Subject(s)
Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Glioma/metabolism , Glioma/pathology , Osteopontin/metabolism , Peptide Fragments/metabolism , Thrombin/metabolism , Amino Acid Sequence , Antithrombin III/metabolism , Apoptosis/genetics , Biomarkers, Tumor/cerebrospinal fluid , Brain Neoplasms/genetics , Cell Adhesion , Cell Line, Tumor , Cell Movement/genetics , Cell Survival , Chemokine CCL3/metabolism , Chemokine CCL4/metabolism , Conserved Sequence , Gene Expression Regulation, Neoplastic , Glioma/genetics , Humans , Models, Biological , Molecular Sequence Data , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Oligopeptides/metabolism , Osteopontin/cerebrospinal fluid , Osteopontin/chemistry , Peptide Hydrolases/metabolism , Proteolysis , Sequence Alignment , Statistics, Nonparametric , Vascular Endothelial Growth Factor A/metabolism
12.
J Biol Chem ; 286(45): 39520-7, 2011 Nov 11.
Article in English | MEDLINE | ID: mdl-21930706

ABSTRACT

Chemerin is a chemoattractant involved in immunity that may also function as an adipokine. Chemerin circulates as an inactive precursor (chem163S), and its activation requires proteolytic cleavages at its C terminus, involving proteases involved in coagulation, fibrinolysis, and inflammation. However, the key proteolytic steps in prochemerin activation in vivo remain to be established. Previously, we have shown that C-terminal cleavage of chem163S by plasmin to chem158K, followed by a carboxypeptidase cleavage, leads to the most active isoform, chem157S. To identify and quantify the in vivo chemerin isoforms in biological specimens, we developed specific ELISAs for chem163S, chem158K, and chem157S, using antibodies raised against peptides from the C terminus of the different chemerin isoforms. We found that the mean plasma concentrations of chem163S, chem158K, and chem157S were 40 ± 7.9, 8.1 ± 2.9, and 0.7 ± 0.8 ng/ml, respectively. The total level of cleaved and noncleaved chemerins in cerebrospinal fluids was ∼10% of plasma levels whereas it was elevated ∼2-fold in synovial fluids from patients with arthritis. On the other hand, the fraction of cleaved chemerins was much higher in synovial fluid and cerebrospinal fluid samples than in plasma (∼75%, 50%, and 18% respectively). Chem158K was the dominant chemerin isoform, and it was not generated by ex vivo processing, indicating that cleavage of prochemerin at position Lys-158, whether by plasmin or another serine protease, represents a major step in prochemerin activation in vivo. Our study provides the first direct evidence that chemerin undergoes extensive proteolytic processing in vivo, underlining the importance of measuring individual isoforms.


Subject(s)
Chemokines/blood , Chemokines/cerebrospinal fluid , Proteolysis , Synovial Fluid/metabolism , Enzyme-Linked Immunosorbent Assay , Female , Humans , Intercellular Signaling Peptides and Proteins , Male , Protein Isoforms/blood , Protein Isoforms/cerebrospinal fluid
13.
J Biol Chem ; 286(45): 39510-9, 2011 Nov 11.
Article in English | MEDLINE | ID: mdl-21949124

ABSTRACT

Chemerin is a chemoattractant involved in innate and adaptive immunity as well as an adipokine implicated in adipocyte differentiation. Chemerin circulates as an inactive precursor in blood whose bioactivity is closely regulated through proteolytic processing at its C terminus. We developed methodology for production of different recombinant chemerin isoforms (chem163S, chem157S, and chem155A) which allowed us to obtain large quantities of these proteins with purity of >95%. Chem158K was generated from chem163S by plasmin cleavage. Characterization by mass spectrometry and Edman degradation demonstrated that both the N and C termini were correct for each isoform. Ca(2+) mobilization assays showed that the EC(50) values for chem163S and chem158K were 54.2 ± 19.9 nm and 65.2 ± 13.2 nm, respectively, whereas chem157S had a ∼50-fold higher potency with an EC(50) of 1.2 ± 0.7 nm. Chem155A had no agonist activity and weak antagonist activity, causing a 50% reduction of chem157S activity at a molar ratio of 100:1. Similar results were obtained in a chemotaxis assay. Because chem158K is the dominant form in cerebrospinal fluid from patients with glioblastoma (GBM), we examined the significance of chemerin in GBM biology. In silico analysis showed chemerin mRNA was significantly increased in tissue from grade III and IV gliomas. Furthermore, U-87 MG cells, a human GBM line, express the chemerin receptors, chemokine-like receptor 1 and chemokine receptor-like 2, and chem157S triggered Ca(2+) flux. This study emphasized the necessity of appropriate C-terminal proteolytic processing to generate the likely physiologic form of active chemerin, chem157S, and suggested a possible role in malignant GBM.


Subject(s)
Chemokines/metabolism , Gene Expression Regulation, Neoplastic , Glioblastoma/metabolism , Neoplasm Proteins/metabolism , Proteolysis , Signal Transduction , Animals , CHO Cells , Chemokines/chemistry , Chemokines/genetics , Cricetinae , Cricetulus , Fibrinolysin/chemistry , Glioblastoma/genetics , Humans , Intercellular Signaling Peptides and Proteins , Neoplasm Proteins/genetics , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Structure, Tertiary , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , RNA, Neoplasm/biosynthesis , RNA, Neoplasm/genetics , Receptors, Chemokine/biosynthesis , Receptors, Chemokine/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Tumor Cells, Cultured
14.
Arterioscler Thromb Vasc Biol ; 30(7): 1363-70, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20431069

ABSTRACT

OBJECTIVE: To determine whether procarboxypeptidase B (pCPB)(-/-) mice are susceptible to accelerated abdominal aortic aneurysm (AAA) development secondary to unregulated OPN-mediated mural inflammation in the absence of CPB inhibition. METHODS AND RESULTS: Thrombin/thrombomodulin cleaves thrombin-activatable pCPB or thrombin-activatable fibrinolysis inhibitor, activating CPB, which inhibits the generation of plasmin and inactivates proinflammatory mediators (complement C5a and thrombin-cleaved osteopontin [OPN]). Apolipoprotein E(-/-)OPN(-/-) mice are protected from experimental AAA formation. Murine AAAs were created via intra-aortic porcine pancreatic elastase (PPE) infusion. Increased mortality secondary to AAA rupture was observed in pCPB(-/-) mice at the standard PPE dose. At reduced doses of PPE, pCPB(-/-) mice developed larger AAAs than wild-type controls (1.01+/-0.27 versus 0.68+/-0.05 mm; P=0.02 [mean+/-SD]). C5(-/-) and OPN(-/-) mice were not protected against AAA development. Treatment with tranexamic acid inhibited plasmin generation and abrogated enhanced AAA progression in pCPB(-/-) mice. CONCLUSIONS: This study establishes the role of CPB in experimental AAA disease, indicating that CPB has a broad anti-inflammatory role in vivo. Enhanced AAA formation in the PPE model is the result of increased plasmin generation, not unregulated C5a- or OPN-mediated mural inflammation.


Subject(s)
Aortic Aneurysm, Abdominal/enzymology , Aortic Rupture/enzymology , Carboxypeptidase B2/deficiency , Animals , Antifibrinolytic Agents/pharmacology , Aortic Aneurysm, Abdominal/chemically induced , Aortic Aneurysm, Abdominal/genetics , Aortic Aneurysm, Abdominal/pathology , Aortic Aneurysm, Abdominal/prevention & control , Aortic Rupture/chemically induced , Aortic Rupture/genetics , Aortic Rupture/pathology , Aortic Rupture/prevention & control , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Carboxypeptidase B2/genetics , Complement C5a/metabolism , Disease Models, Animal , Disease Progression , Fibrinolysin/metabolism , Inflammation Mediators/blood , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Osteopontin/deficiency , Osteopontin/genetics , Pancreatic Elastase , Time Factors , Tranexamic Acid/pharmacology
15.
Acta Biochim Biophys Sin (Shanghai) ; 41(12): 973-9, 2009 Dec.
Article in English | MEDLINE | ID: mdl-20011981

ABSTRACT

Chemerin is a novel chemoattractant recognized by chemokine-like receptor 1 (CMKLR1), a serpentine receptor expressed primarily by plasmacytoid dendritic cells, natural killer cells, and macrophages. Human prochemerin circulates in plasma as an inactive precursor. Its chemotactic activity is expressed upon cleavage of the C-terminal amino acid residues by proteases of the coagulation, fibrinolytic, and inflammatory system. The C-terminal cleavage site of prochemerin is highly conservative, indicating that the proteolytic regulation of chemerin bioactivity is a common mechanism undertaken by different species. In this review, we summarized chemerin-proteases interactions, chemerin receptors, and their importance in normal and pathologic conditions.


Subject(s)
Biological Factors/physiology , Chemokines/metabolism , Enzyme Activators/metabolism , Inflammation/metabolism , Peptide Hydrolases/metabolism , Receptors, Chemokine/metabolism , Amino Acid Sequence , Animals , Biological Factors/genetics , Chemokines/chemistry , Enzyme Activators/chemistry , Humans , Inflammation/immunology , Inflammation/pathology , Molecular Sequence Data , Peptide Hydrolases/immunology , Receptors, Chemokine/immunology
16.
Arthritis Rheum ; 60(10): 2902-12, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19790060

ABSTRACT

OBJECTIVE: Osteopontin (OPN) is a proinflammatory cytokine that plays an important role in the pathogenesis of rheumatoid arthritis (RA). OPN can be cleaved by thrombin, resulting in OPN-R and exposing the cryptic C-terminal alpha4beta1 and alpha9beta1 integrin-binding motif (SVVYGLR). Thrombin-activatable carboxypeptidase B (CPB), also called thrombin-activatable fibrinolysis inhibitor, removes the C-terminal arginine from OPN-R, generating OPN-L and abrogating its enhanced cell binding. We undertook this study to investigate the roles of OPN-R and OPN-L in synoviocyte adhesion, which contributes to the formation of invasive pannus, and in neutrophil survival, which affects inflammatory infiltrates in RA. METHODS: Using specifically developed enzyme-linked immunosorbent assays, we tested the synovial fluid of patients with RA, osteoarthritis (OA), and psoriatic arthritis (PsA) to determine OPN-R, OPN-L, and full-length OPN (OPN-FL) levels. RESULTS: Elevated levels of OPN-R and OPN-L were found in synovial fluid samples from RA patients, but not in samples from OA or PsA patients. Increased levels of OPN-R and OPN-L correlated with increased levels of multiple inflammatory cytokines, including tumor necrosis factor alpha and interleukin-6. Immunohistochemical analyses revealed robust expression of OPN-FL, but only minimal expression of OPN-R, in RA synovium, suggesting that cleaved OPN is released into synovial fluid. In cellular assays, OPN-FL, and to a lesser extent OPN-R and OPN-L, had an antiapoptotic effect on neutrophils. OPN-R augmented RA fibroblast-like synoviocyte binding mediated by SVVYGLR binding to alpha4beta1, whereas OPN-L did not. CONCLUSION: Thrombin activation of OPN (resulting in OPN-R) and its subsequent inactivation by thrombin-activatable CPB (generating OPN-L) occurs locally within inflamed joints in RA. Our data suggest that thrombin-activatable CPB plays a central homeostatic role in RA by regulating neutrophil viability and reducing synoviocyte adhesion.


Subject(s)
Arthritis, Rheumatoid/metabolism , Carboxypeptidase B/metabolism , Neutrophils/metabolism , Neutrophils/pathology , Osteopontin/metabolism , Synovial Membrane/metabolism , Synovial Membrane/pathology , Thrombin/metabolism , Antibodies, Anti-Idiotypic/immunology , Apoptosis/physiology , Arthritis, Psoriatic/metabolism , Arthritis, Psoriatic/pathology , Arthritis, Psoriatic/physiopathology , Arthritis, Rheumatoid/pathology , Arthritis, Rheumatoid/physiopathology , Cell Adhesion/physiology , Cell Survival/physiology , Humans , Interleukin-6/metabolism , Osteoarthritis/metabolism , Osteoarthritis/pathology , Osteoarthritis/physiopathology , Osteopontin/immunology , Tumor Necrosis Factor-alpha/metabolism
17.
Adv Exp Med Biol ; 632: 61-9, 2008.
Article in English | MEDLINE | ID: mdl-19025114

ABSTRACT

Thrombin-activatable procarboxypeptidase B (proCPB or thrombin-activatable fibrinolysis inhibitor or TAFI) is a plasma procarboxypeptidase that is activated by the thrombin-thrombomodulin complex on the vascular endothelial surface. The activated CPB removes the newly exposed carboxyl terminal lysines in the partially digested fibrin clot, diminishes tissue plasminogen activator and plasminogen binding, and protects the clot from premature lysis. We have recently shown that CPB is catalytically more efficient than plasma CPN, the major plasma anaphylatoxin inhibitor, in inhibiting bradykinin, activated complement C3a, C5a, and thrombin-cleaved osteopontin in vitro. Using a thrombin mutant (E229K) that has minimal procoagulant properties but retains the ability to activate protein C and proCPB in vivo, we showed that infusion of E229K thrombin into wild type mice reduced bradykinin-induced hypotension but it had no effect in proCPB-deficient mice, indicating that the beneficial effect of E229K thrombin is mediated through its activation of proCPB and not protein C. Similarly proCPB-deficient mice displayed enhanced pulmonary inflammation in a C5a-induced alveolitis model and E229K thrombin ameliorated the magnitude of alveolitis in wild type but not proCPB-deficient mice. Thus, our in vitro and in vivo data support the thesis that thrombin-activatable CPB has broad anti-inflammatory properties. By specific cleavage of the carboxyl terminal arginines from C3a, C5a, bradykinin and thrombin-cleaved osteopontin, it inactivates these active inflammatory mediators. Along with the activation of protein C, the activation of proCPB by the endothelial thrombin-thrombomodulin complex represents a homeostatic feedback mechanism in regulating thrombin's pro-inflammatory functions in vivo.


Subject(s)
Carboxypeptidase B2/physiology , Carboxypeptidase B/pharmacology , Inflammation , Thrombin/physiology , Animals , Carboxypeptidase B/metabolism , Carboxypeptidase B2/blood , Carboxypeptidase B2/metabolism , Mice , Models, Immunological , Thrombin/metabolism , Thrombin/pharmacology , Thrombomodulin/chemistry , Thrombomodulin/metabolism
18.
Mol Immunol ; 45(16): 4080-3, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18706698

ABSTRACT

Thrombin-activatable procarboxypeptidase B (proCPB or thrombin-activatable fibrinolysis inhibitor or TAFI) is a plasma procarboxypeptidase that is activated by the thrombin-thrombomodulin complex on the vascular endothelial surface. The activated CPB removes the newly exposed carboxyl terminal lysines in the partially digested fibrin clot, diminishes tissue plasminogen activator and plasminogen binding, and protects the clot from premature lysis. We have recently shown that CPB is catalytically more efficient than plasma CPN, the major plasma anaphylatoxin inhibitor, in inhibiting bradykinin, activated complement C3a, C5a, and thrombin-cleaved osteopontin in vitro. Using a thrombin mutant (E229K) that has minimal procoagulant properties but retains the ability to activate protein C and proCPB in vivo, we showed that infusion of E229K thrombin into wild-type mice reduced bradykinin-induced hypotension but it had no effect in proCPB-deficient mice, indicating that the beneficial effect of E229K thrombin is mediated through its activation of proCPB and not protein C. Similarly proCPB-deficient mice displayed enhanced pulmonary inflammation in a C5a-induced alveolitis model and E229K thrombin ameliorated the magnitude of alveolitis in wild-type but not proCPB-deficient mice. ProCPB-deficient mice also displayed enhanced arthritis in an inflammatory arthritis model. Thus, our in vitro and in vivo data support the thesis that thrombin-activatable CPB has broad anti-inflammatory properties. By specific cleavage of the carboxyl terminal arginines from C3a, C5a, bradykinin and thrombin-cleaved osteopontin, it inactivates these active inflammatory mediators. Along with the activation of protein C, the activation of proCPB by the endothelial thrombin-thrombomodulin complex represents a homeostatic feedback mechanism in regulating thrombin's pro-inflammatory functions in vivo.


Subject(s)
Carboxypeptidase B2/physiology , Carboxypeptidase B/pharmacology , Inflammation , Thrombin/physiology , Animals , Carboxypeptidase B/metabolism , Carboxypeptidase B2/blood , Carboxypeptidase B2/metabolism , Mice , Models, Immunological , Thrombin/metabolism , Thrombin/pharmacology , Thrombomodulin/chemistry , Thrombomodulin/metabolism
19.
J Biol Chem ; 283(26): 17789-96, 2008 Jun 27.
Article in English | MEDLINE | ID: mdl-18413297

ABSTRACT

The cytokine osteopontin (OPN) can be hydrolyzed by thrombin exposing a cryptic alpha(4)beta(1)/alpha(9)beta(1) integrin-binding motif (SVVYGLR), thereby acting as a potent cytokine for cells bearing these activated integrins. We show that purified milk OPN is a substrate for thrombin with a k(cat)/K(m) value of 1.14 x 10(5) m(-1) s(-1). Thrombin cleavage of OPN was inhibited by unsulfated hirugen (IC(50) = 1.2 +/- 0.2 microm), unfractionated heparin (IC(50) = 56.6 +/- 8.4 microg/ml) and low molecular weight (5 kDa) heparin (IC(50) = 31.0 +/- 7.9 microg/ml), indicating the involvement of both anion-binding exosite I (ABE-I) and anion-binding exosite II (ABE-II). Using a thrombin mutant library, we mapped residues important for recognition and cleavage of OPN within ABE-I and ABE-II. A peptide (OPN-(162-197)) was designed spanning the OPN thrombin cleavage site and a hirudin-like C-terminal tail domain. Thrombin cleaved OPN-(162-197) with a specificity constant of k(cat)/K(m) = 1.64 x 10(4) m(-1) s(-1). Representative ABE-I mutants (K65A, H66A, R68A, Y71A, and R73A) showed greatly impaired cleavage, whereas the ABE-II mutants were unaffected, suggesting that ABE-I interacts principally with the hirudin-like OPN domain C-terminal and contiguous to the thrombin cleavage site. Debye-Hückel slopes for milk OPN (-4.1 +/- 1.0) and OPN-(162-197) (-2.4 +/- 0.2) suggest that electrostatic interactions play an important role in thrombin recognition and cleavage of OPN. Thus, OPN is a bona fide substrate for thrombin, and generation of thrombin-cleaved OPN with enhanced pro-inflammatory properties provides another molecular link between coagulation and inflammation.


Subject(s)
Hydrolysis , Osteopontin/chemistry , Osteopontin/metabolism , Thrombin/chemistry , Amino Acid Motifs , Anions , Binding Sites , Blood Coagulation , Humans , Inflammation , Inhibitory Concentration 50 , Integrins/chemistry , Kinetics , Milk, Human/metabolism , Mutation , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...