Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
JAMA Dermatol ; 158(8): 879-886, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35675051

ABSTRACT

Importance: Topical formulations of tretinoin precursors (retinol and its ester derivatives) are widely available over the counter and may offer similar clinical benefits to those of tretinoin for treatment of photoaging. However, which of the many purported molecular effects of retinoids most strongly drives clinical improvements in tretinoin-treated skin remains unclear. Objectives: To evaluate the clinical efficacy of topical tretinoin precursors (TTP) vs tretinoin (RA) in treating moderate to severe facial photodamage and to identify potential biomarkers that correlate with clinical efficacy. Design, Setting, and Participants: This randomized, double-blind, single-center, parallel-arm study of 24 patients with moderate to severe facial photodamage was conducted at an academic referral center from November 2010 to December 2011, with data analysis performed from January 2012 to December 2021. Interventions: Daily topical application of 0.02% RA or 1.1% TTP formulation containing retinol, retinyl acetate, and retinyl palmitate for 24 weeks. Main Outcomes and Measures: Photoaging and tolerability were assessed by dermatologist evaluations and patient-reported outcomes. Target gene expression was assessed by real-time quantitative polymerase chain reaction of biopsied tissue from treated areas. Results: A total of 20 White women were ultimately analyzed (9 randomized to TTP, 11 randomized to RA). At week 24, there was no significant difference in Griffiths photoaging scores among patients receiving TTP vs RA (median, 4 vs 5) (TTP - RA difference: -1; 95% CI, -2 to 1; P = .27). Treatment with TTP was associated with erythema 6 times less frequently than RA (11% vs 64%) (TTP - RA difference: -0.53; 95% CI, -0.88 to -0.17; P = .01). Target gene analysis showed significant CRABP2 messenger RNA (mRNA) induction (confirming retinoic acid receptor signaling) but no significant changes in procollagen I or MMP1/3/9 mRNA in TTP-treated samples. Instead, MMP2 mRNA, which encodes a type IV collagenase, was significantly reduced in TTP-treated samples (week 24 - baseline mRNA difference: -5; 96% CI, -33 to 1.6; P = .02), and changes in MMP2 were strongly correlated with changes in fine wrinkles (r = 0.54; 95% CI, 0.12 to 0.80; P = .01). Interestingly, patients with severe baseline wrinkles exhibited greater improvements (r = -0.74; 95% CI, -0.89 to -0.43; P < .001). This trend was mirrored in MMP2 mRNA, with initial expression strongly predicting subsequent changes (r = -0.78; 95% CI, -0.89 to -0.43; P < .001). Conclusions and Relevance: In this randomized clinical trial, there was no significant difference in efficacy between this particular formulation of TTP and tretinoin 0.02%. However, the results of these mechanistic studies highlight MMP2 as a possible mediator of retinoid efficacy in photoaging. Trial Registration: ClinicalTrials.gov Identifier: NCT01283464.


Subject(s)
Skin Aging , Tretinoin , Biomarkers , Double-Blind Method , Female , Humans , Hyperplasia/drug therapy , Matrix Metalloproteinase 2 , RNA, Messenger , Retinoids , Skin/drug effects , Skin Aging/drug effects , Treatment Outcome , Tretinoin/therapeutic use , Vitamin A/therapeutic use
3.
Arthritis Rheumatol ; 73(5): 858-865, 2021 05.
Article in English | MEDLINE | ID: mdl-33258553

ABSTRACT

OBJECTIVE: This open-label 12-week study was conducted to evaluate the efficacy and safety of tofacitinib, a JAK inhibitor, in treatment-refractory active dermatomyositis (DM). METHODS: Tofacitinib in extended-release doses of 11 mg was administered daily to 10 subjects with DM. Prior to treatment, a complete washout of all steroid-sparing agents was performed. The primary outcome measure was assessment of disease activity improvement based on the International Myositis Assessment and Clinical Studies group definition of improvement. Response rate was measured as the total improvement score according to the 2016 American College of Rheumatology (ACR)/European League Against Rheumatism (EULAR) myositis response criteria. Secondary outcome measures included Cutaneous Dermatomyositis Disease Area and Severity Index (CDASI) scores, chemokine levels, immunohistochemical analysis of STAT1 expression in the skin, RNA sequencing analysis, and safety. RESULTS: At 12 weeks, the primary outcome was met in all 10 subjects. Five (50%) of 10 subjects experienced moderate improvement in disease activity, and the other 50% experienced minimal improvement according to the 2016 ACR/EULAR myositis response criteria. The secondary outcome of the mean change in the CDASI activity score over 12 weeks was statistically significant (mean ± SD 28 ± 15.4 at baseline versus 9.5 ± 8.5 at 12 weeks) (P = 0.0005). Serum chemokine levels of CXCL9/CXCL10 showed a statistically significant change from baseline. A marked decrease in STAT1 signaling in association with suppression of interferon target gene expression was demonstrated in 3 of 9 skin biopsy samples from subjects with dermatomyositis. The mean ± SD level of creatine kinase in the 10 subjects at baseline was 82 ± 34.8 IU/liter, highlighting that disease activity was predominantly located in the skin. CONCLUSION: This is the first prospective, open-label clinical trial of tofacitinib in DM that demonstrates strong clinical efficacy of a pan-JAK inhibitor, as measured by validated myositis response criteria. Future randomized controlled trials using JAK inhibitors should be considered for treating DM.


Subject(s)
Dermatomyositis/drug therapy , Janus Kinase Inhibitors/therapeutic use , Piperidines/therapeutic use , Pyrimidines/therapeutic use , Adult , Chemokine CXCL10/metabolism , Chemokine CXCL9/metabolism , Dermatomyositis/metabolism , Dermatomyositis/physiopathology , Female , Humans , Immunohistochemistry , Male , Middle Aged , Muscle, Skeletal/metabolism , Pilot Projects , Proof of Concept Study , Prospective Studies , RNA-Seq , STAT1 Transcription Factor/metabolism , Skin/metabolism , Treatment Outcome
4.
Genome Biol ; 16: 80, 2015 Apr 16.
Article in English | MEDLINE | ID: mdl-25886480

ABSTRACT

BACKGROUND: Aging and sun exposure are the leading causes of skin cancer. It has been shown that epigenetic changes, such as DNA methylation, are well established mechanisms for cancer, and also have emerging roles in aging and common disease. Here, we directly ask whether DNA methylation is altered following skin aging and/or chronic sun exposure in humans. RESULTS: We compare epidermis and dermis of both sun-protected and sun-exposed skin derived from younger subjects (under 35 years old) and older subjects (over 60 years old), using the Infinium HumanMethylation450 array and whole genome bisulfite sequencing. We observe large blocks of the genome that are hypomethylated in older, sun-exposed epidermal samples, with the degree of hypomethylation associated with clinical measures of photo-aging. We replicate these findings using whole genome bisulfite sequencing, comparing epidermis from an additional set of younger and older subjects. These blocks largely overlap known hypomethylated blocks in colon cancer and we observe that these same regions are similarly hypomethylated in squamous cell carcinoma samples. CONCLUSIONS: These data implicate large scale epigenomic change in mediating the effects of environmental damage with photo-aging.


Subject(s)
Aging/genetics , Epidermis/metabolism , Genomics , Skin Aging/radiation effects , Sunlight/adverse effects , Adult , Aged , DNA Methylation/radiation effects , Epigenesis, Genetic , Epigenomics , Female , Gene Library , Healthy Volunteers , Humans , Male , Sequence Analysis, DNA , Skin Aging/physiology , Skin Neoplasms/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...