Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Clin Cancer Res ; 30(4): 849-864, 2024 02 16.
Article in English | MEDLINE | ID: mdl-37703185

ABSTRACT

PURPOSE: Models to study metastatic disease in rare cancers are needed to advance preclinical therapeutics and to gain insight into disease biology. Osteosarcoma is a rare cancer with a complex genomic landscape in which outcomes for patients with metastatic disease are poor. As osteosarcoma genomes are highly heterogeneous, multiple models are needed to fully elucidate key aspects of disease biology and to recapitulate clinically relevant phenotypes. EXPERIMENTAL DESIGN: Matched patient samples, patient-derived xenografts (PDX), and PDX-derived cell lines were comprehensively evaluated using whole-genome sequencing and RNA sequencing. The in vivo metastatic phenotype of the PDX-derived cell lines was characterized in both an intravenous and an orthotopic murine model. As a proof-of-concept study, we tested the preclinical effectiveness of a cyclin-dependent kinase inhibitor on the growth of metastatic tumors in an orthotopic amputation model. RESULTS: PDXs and PDX-derived cell lines largely maintained the expression profiles of the patient from which they were derived despite the emergence of whole-genome duplication in a subset of cell lines. The cell lines were heterogeneous in their metastatic capacity, and heterogeneous tissue tropism was observed in both intravenous and orthotopic models. Single-agent dinaciclib was effective at dramatically reducing the metastatic burden. CONCLUSIONS: The variation in metastasis predilection sites between osteosarcoma PDX-derived cell lines demonstrates their ability to recapitulate the spectrum of the disease observed in patients. We describe here a panel of new osteosarcoma PDX-derived cell lines that we believe will be of wide use to the osteosarcoma research community.


Subject(s)
Bone Neoplasms , Cyclic N-Oxides , Indolizines , Osteosarcoma , Pyridinium Compounds , Humans , Animals , Mice , Disease Models, Animal , Drug Evaluation, Preclinical , Xenograft Model Antitumor Assays , Osteosarcoma/drug therapy , Osteosarcoma/genetics , Osteosarcoma/metabolism , Cell Line, Tumor , Bone Neoplasms/drug therapy , Bone Neoplasms/genetics , Bone Neoplasms/metabolism
2.
Cancer Rep (Hoboken) ; 6(12): e1901, 2023 12.
Article in English | MEDLINE | ID: mdl-37933765

ABSTRACT

BACKGROUND: The development of tyrosine kinase inhibitors (TKIs) has significantly improved survival rates among patients with Philadelphia chromosome (Ph+) B cell acute lymphoblastic leukemia (B-ALL). Ph-like B-ALL patients lack the BCR::ABL1 translocation but share gene expression profiles with Ph+ B-ALL. The role of TKIs for Ph-like patients pre- and post-hematopoietic stem cell transplantation (HSCT) is not yet clear. CASE: Here we present five cases of pediatric, adolescent, and young adult patients who presented with Ph-like B-ALL or CML in B-ALL blast phase who were treated with personalized TKI regimens pre- and post-HSCT. CONCLUSION: This report describes several novel Ph-like fusions as well as combinations of TKIs with chemotherapy or immunotherapy not yet reported in the pediatric population. This case series provides real-world experience highlighting the potential application of pre- and post-HSCT use of TKIs in a subset of patients with targetable fusions.


Subject(s)
Hematopoietic Stem Cell Transplantation , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Child , Adolescent , Young Adult , Protein Kinase Inhibitors/adverse effects , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Philadelphia Chromosome , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Hematopoietic Stem Cell Transplantation/adverse effects
3.
Nat Commun ; 14(1): 3966, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37407562

ABSTRACT

KRAS is a frequent driver in lung cancer. To identify KRAS-specific vulnerabilities in lung cancer, we performed RNAi screens in primary spheroids derived from a Kras mutant mouse lung cancer model and discovered an epigenetic regulator Ubiquitin-like containing PHD and RING finger domains 1 (UHRF1). In human lung cancer models UHRF1 knock-out selectively impaired growth and induced apoptosis only in KRAS mutant cells. Genome-wide methylation and gene expression analysis of UHRF1-depleted KRAS mutant cells revealed global DNA hypomethylation leading to upregulation of tumor suppressor genes (TSGs). A focused CRISPR/Cas9 screen validated several of these TSGs as mediators of UHRF1-driven tumorigenesis. In vivo, UHRF1 knock-out inhibited tumor growth of KRAS-driven mouse lung cancer models. Finally, in lung cancer patients high UHRF1 expression is anti-correlated with TSG expression and predicts worse outcomes for patients with KRAS mutant tumors. These results nominate UHRF1 as a KRAS-specific vulnerability and potential target for therapeutic intervention.


Subject(s)
Adenocarcinoma of Lung , CCAAT-Enhancer-Binding Proteins , Lung Neoplasms , Ubiquitin-Protein Ligases , Animals , Humans , Mice , Adenocarcinoma of Lung/genetics , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Cell Transformation, Neoplastic/genetics , DNA Methylation , Epigenesis, Genetic , Lung Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
4.
bioRxiv ; 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36711882

ABSTRACT

Models to study metastatic disease in rare cancers are needed to advance preclinical therapeutics and to gain insight into disease biology, especially for highly aggressive cancers with a propensity for metastatic spread. Osteosarcoma is a rare cancer with a complex genomic landscape in which outcomes for patients with metastatic disease are poor. As osteosarcoma genomes are highly heterogeneous, a large panel of models is needed to fully elucidate key aspects of disease biology and to recapitulate clinically-relevant phenotypes. We describe the development and characterization of osteosarcoma patient-derived xenografts (PDXs) and a panel of PDX-derived cell lines. Matched patient samples, PDXs, and PDX-derived cell lines were comprehensively evaluated using whole genome sequencing and RNA sequencing. PDXs and PDX-derived cell lines largely maintained the expression profiles of the patient from which they were derived despite the emergence of whole-genome duplication (WGD) in a subset of cell lines. These cell line models were heterogeneous in their metastatic capacity and their tissue tropism as observed in both intravenous and orthotopic models. As proof-of-concept study, we used one of these models to test the preclinical effectiveness of a CDK inhibitor on the growth of metastatic tumors in an orthotopic amputation model. Single-agent dinaciclib was effective at dramatically reducing the metastatic burden in this model.

5.
Mol Cancer Ther ; 20(10): 2016-2025, 2021 10.
Article in English | MEDLINE | ID: mdl-34353895

ABSTRACT

Most circulating tumor DNA (ctDNA) assays are designed to detect recurrent mutations. Pediatric sarcomas share few recurrent mutations but rather are characterized by translocations and copy-number changes. We applied Cancer Personalized Profiling by deep Sequencing (CAPP-Seq) for detection of translocations found in the most common pediatric sarcomas. We also applied ichorCNA to the combined off-target reads from our hybrid capture to simultaneously detect copy-number alterations (CNA). We analyzed 64 prospectively collected plasma samples from 17 patients with pediatric sarcoma. Translocations were detected in the pretreatment plasma of 13 patients and were confirmed by tumor sequencing in 12 patients. Two of these patients had evidence of complex chromosomal rearrangements in their ctDNA. We also detected copy-number changes in the pretreatment plasma of 7 patients. We found that ctDNA levels correlated with metastatic status and clinical response. Furthermore, we detected rising ctDNA levels before relapse was clinically apparent, demonstrating the high sensitivity of our assay. This assay can be utilized for simultaneous detection of translocations and CNAs in the plasma of patients with pediatric sarcoma. While we describe our experience in pediatric sarcomas, this approach can be applied to other tumors that are driven by structural variants.


Subject(s)
Biomarkers, Tumor/genetics , Circulating Tumor DNA/genetics , DNA Copy Number Variations , DNA, Neoplasm/genetics , Neoplasm Recurrence, Local/diagnosis , Sarcoma/diagnosis , Translocation, Genetic , Biomarkers, Tumor/blood , Child , Circulating Tumor DNA/blood , DNA, Neoplasm/blood , Follow-Up Studies , High-Throughput Nucleotide Sequencing , Humans , Longitudinal Studies , Mutation , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/metabolism , Prognosis , Prospective Studies , Sarcoma/genetics , Sarcoma/metabolism
6.
J Pediatr Hematol Oncol ; 43(6): e808-e811, 2021 08 01.
Article in English | MEDLINE | ID: mdl-32815876

ABSTRACT

Overlapping myelodysplastic/myeloproliferative neoplasms (MDS/MPN) are clonal hematopoietic disorders with features of myelodysplasia and myeloproliferation. The only well-characterized MDS/MPN in children is juvenile myelomonocytic leukemia, an aggressive disorder of infants and toddlers. The biochemical hallmark of this disease is hyperactivation of the Ras/MAPK signaling pathway caused by mutations in Ras pathway genes in more than 90% of patients. Translocations involving receptor tyrosine kinases have been identified in rare cases. Here, we report a 2-year-old patient who presented with MDS/MPN driven by a cytogenetically cryptic NUP98-NSD1 fusion, a translocation thought to exclusively occur in patients with acute myeloid leukemia.


Subject(s)
Leukemia, Myelomonocytic, Juvenile/genetics , Myelodysplastic-Myeloproliferative Diseases/genetics , Oncogene Proteins, Fusion/genetics , Child, Preschool , Cytogenetics , Female , Humans , Leukemia, Myelomonocytic, Juvenile/diagnosis , Myelodysplastic-Myeloproliferative Diseases/diagnosis , Translocation, Genetic
8.
PLoS Comput Biol ; 16(4): e1007753, 2020 04.
Article in English | MEDLINE | ID: mdl-32275708

ABSTRACT

Precision oncology has primarily relied on coding mutations as biomarkers of response to therapies. While transcriptome analysis can provide valuable information, incorporation into workflows has been difficult. For example, the relative rather than absolute gene expression level needs to be considered, requiring differential expression analysis across samples. However, expression programs related to the cell-of-origin and tumor microenvironment effects confound the search for cancer-specific expression changes. To address these challenges, we developed an unsupervised clustering approach for discovering differential pathway expression within cancer cohorts using gene expression measurements. The hydra approach uses a Dirichlet process mixture model to automatically detect multimodally distributed genes and expression signatures without the need for matched normal tissue. We demonstrate that the hydra approach is more sensitive than widely-used gene set enrichment approaches for detecting multimodal expression signatures. Application of the hydra analysis framework to small blue round cell tumors (including rhabdomyosarcoma, synovial sarcoma, neuroblastoma, Ewing sarcoma, and osteosarcoma) identified expression signatures associated with changes in the tumor microenvironment. The hydra approach also identified an association between ATRX deletions and elevated immune marker expression in high-risk neuroblastoma. Notably, hydra analysis of all small blue round cell tumors revealed similar subtypes, characterized by changes to infiltrating immune and stromal expression signatures.


Subject(s)
Gene Expression Profiling/methods , Neoplasms/genetics , Transcriptome/genetics , Biomarkers, Tumor , Child , Cluster Analysis , Computational Biology/methods , Gene Expression Regulation, Neoplastic/genetics , Humans , Models, Statistical , Neuroblastoma/genetics , Precision Medicine/methods , Tumor Microenvironment/genetics
9.
Nat Med ; 25(11): 1783-1795, 2019 11.
Article in English | MEDLINE | ID: mdl-31700175

ABSTRACT

Proinflammatory cytokines in the tumor microenvironment can promote tumor growth, yet their value as therapeutic targets remains underexploited. We validated the functional significance of the cardiotrophin-like cytokine factor 1 (CLCF1)-ciliary neurotrophic factor receptor (CNTFR) signaling axis in lung adenocarcinoma (LUAD) and generated a high-affinity soluble receptor (eCNTFR-Fc) that sequesters CLCF1, thereby inhibiting its oncogenic effects. eCNTFR-Fc inhibits tumor growth in multiple xenograft models and in an autochthonous, highly aggressive genetically engineered mouse model of LUAD, driven by activation of oncogenic Kras and loss of Trp53. Abrogation of CLCF1 through eCNTFR-Fc appears most effective in tumors driven by oncogenic KRAS. We observed a correlation between the effectiveness of eCNTFR-Fc and the presence of KRAS mutations that retain the intrinsic capacity to hydrolyze guanosine triphosphate, suggesting that the mechanism of action may be related to altered guanosine triphosphate loading. Overall, we nominate blockade of CLCF1-CNTFR signaling as a novel therapeutic opportunity for LUAD and potentially for other tumor types in which CLCF1 is present in the tumor microenvironment.


Subject(s)
Adenocarcinoma of Lung/drug therapy , Cell Proliferation/genetics , Ciliary Neurotrophic Factor Receptor alpha Subunit/genetics , Cytokines/genetics , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Animals , Cell Line, Tumor , Ciliary Neurotrophic Factor Receptor alpha Subunit/chemistry , Cytokines/chemistry , Gene Expression Regulation, Neoplastic/drug effects , Humans , Interleukins/genetics , Mice , Mutation/genetics , Protein Binding , Proto-Oncogene Proteins p21(ras)/genetics , Signal Transduction/drug effects , Tumor Microenvironment/drug effects , Tumor Suppressor Protein p53/genetics , Xenograft Model Antitumor Assays
10.
Article in English | MEDLINE | ID: mdl-31645344

ABSTRACT

Gliomatosis peritonei is a rare pathologic finding that is associated with ovarian teratomas and malignant mixed germ cell tumors. The occurrence of gliomatosis as a mature glial implant can impart an improved prognosis to patients with immature ovarian teratoma, making prompt and accurate diagnosis important. We describe a case of recurrent immature teratoma in a 10-yr-old female patient, in which comparative analysis of the RNA sequencing gene expression data from the patient's tumor was used effectively to aid in the diagnosis of gliomatosis peritonei.


Subject(s)
Peritoneal Neoplasms/diagnosis , Peritoneal Neoplasms/genetics , Teratoma/diagnosis , Base Sequence/genetics , Child , Female , Glioma/diagnosis , Glioma/genetics , Humans , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/genetics , Prognosis , RNA-Seq/methods , Rare Diseases/diagnosis , Rare Diseases/genetics , Sequence Analysis, RNA/methods , Teratoma/genetics , Exome Sequencing
11.
JAMA Netw Open ; 2(10): e1913968, 2019 10 02.
Article in English | MEDLINE | ID: mdl-31651965

ABSTRACT

Importance: Pediatric cancers are epigenetic diseases; therefore, considering tumor gene expression information is necessary for a complete understanding of the tumorigenic processes. Objective: To evaluate the feasibility and utility of incorporating comparative gene expression information into the precision medicine framework for difficult-to-treat pediatric and young adult patients with cancer. Design, Setting, and Participants: This cohort study was conducted as a consortium between the University of California, Santa Cruz (UCSC) Treehouse Childhood Cancer Initiative and clinical genomic trials. RNA sequencing (RNA-Seq) data were obtained from the following 4 clinical sites and analyzed at UCSC: British Columbia Children's Hospital (n = 31), Lucile Packard Children's Hospital at Stanford University (n = 80), CHOC Children's Hospital and Hyundai Cancer Institute (n = 46), and the Pacific Pediatric Neuro-Oncology Consortium (n = 24). The study dates were January 1, 2016, to March 22, 2017. Exposures: Participants underwent tumor RNA-Seq profiling as part of 4 separate clinical trials at partner hospitals. The UCSC either downloaded RNA-Seq data from a partner institution for analysis in the cloud or provided a Docker pipeline that performed the same analysis at a partner institution. The UCSC then compared each participant's tumor RNA-Seq profile with more than 11 000 uniformly analyzed tumor profiles from pediatric and young adult patients with cancer, downloaded from public data repositories. These comparisons were used to identify genes and pathways that are significantly overexpressed in each patient's tumor. Results of the UCSC analysis were presented to clinical partners. Main Outcomes and Measures: Feasibility of a third-party institution (UCSC Treehouse Childhood Cancer Initiative) to obtain tumor RNA-Seq data from patients, conduct comparative analysis, and present analysis results to clinicians; and proportion of patients for whom comparative tumor gene expression analysis provided useful clinical and biological information. Results: Among 144 samples from children and young adults (median age at diagnosis, 9 years; range, 0-26 years; 72 of 118 [61.0%] male [26 patients sex unknown]) with a relapsed, refractory, or rare cancer treated on precision medicine protocols, RNA-Seq-derived gene expression was potentially useful for 99 of 144 samples (68.8%) compared with DNA mutation information that was potentially useful for only 34 of 74 samples (45.9%). Conclusions and Relevance: This study's findings suggest that tumor RNA-Seq comparisons may be feasible and highlight the potential clinical utility of incorporating such comparisons into the clinical genomic interpretation framework for difficult-to-treat pediatric and young adult patients with cancer. The study also highlights for the first time to date the potential clinical utility of harmonized publicly available genomic data sets.


Subject(s)
Neoplasms/genetics , RNA, Neoplasm/analysis , Sequence Analysis, RNA , Canada , Child , Child, Preschool , Female , Gene Expression , Humans , Infant , Infant, Newborn , Male , Precision Medicine , United States , Young Adult
12.
Cancer Discov ; 9(1): 46-63, 2019 01.
Article in English | MEDLINE | ID: mdl-30266815

ABSTRACT

Osteosarcoma is a highly aggressive cancer for which treatment has remained essentially unchanged for more than 30 years. Osteosarcoma is characterized by widespread and recurrent somatic copy-number alterations (SCNA) and structural rearrangements. In contrast, few recurrent point mutations in protein-coding genes have been identified, suggesting that genes within SCNAs are key oncogenic drivers in this disease. SCNAs and structural rearrangements are highly heterogeneous across osteosarcoma cases, suggesting the need for a genome-informed approach to targeted therapy. To identify patient-specific candidate drivers, we used a simple heuristic based on degree and rank order of copy-number amplification (identified by whole-genome sequencing) and changes in gene expression as identified by RNA sequencing. Using patient-derived tumor xenografts, we demonstrate that targeting of patient-specific SCNAs leads to significant decrease in tumor burden, providing a road map for genome-informed treatment of osteosarcoma. SIGNIFICANCE: Osteosarcoma is treated with a chemotherapy regimen established 30 years ago. Although osteosarcoma is genomically complex, we hypothesized that tumor-specific dependencies could be identified within SCNAs. Using patient-derived tumor xenografts, we found a high degree of response for "genome-matched" therapies, demonstrating the utility of a targeted genome-informed approach.This article is highlighted in the In This Issue feature, p. 1.


Subject(s)
Bone Neoplasms/therapy , Genomic Structural Variation , Molecular Targeted Therapy , Osteosarcoma/therapy , Animals , Bone Neoplasms/genetics , DNA Copy Number Variations , Genomics , Humans , Mice , Osteosarcoma/genetics , Sequence Analysis, RNA , Whole Genome Sequencing , Xenograft Model Antitumor Assays
13.
Oncotarget ; 7(38): 61874-61889, 2016 Sep 20.
Article in English | MEDLINE | ID: mdl-27542204

ABSTRACT

NUCKS1 is a 27 kD vertebrate-specific protein, with a role in the DNA damage response. Here, we show that after 4 Gy total-body X-irradiation, Trp53+/- Nucks1+/- mice more rapidly developed tumors, particularly thymic lymphoma (TL), than Trp53+/- mice. TLs in both cohorts showed loss of heterozygosity (LOH) of the Trp53+ allele in essentially all cases. In contrast, LOH of the Nucks1+ allele was rare. Nucks1 expression correlated well with Nucks1 gene dosage in normal thymi, but was increased in the majority of TLs from Trp53+/- Nucks1+/- mice, suggesting that elevated Nucks1 message may be associated with progression towards malignancy in vivo. Trp53+/- Nucks1+/- mice frequently succumbed to CD4- CD8- TLs harboring translocations involving Igh but not Tcra/d, indicating TLs in Trp53+/- Nucks1+/- mice mostly originated prior to the double positive stage and at earlier lineage than TLs in Trp53+/- mice. Monoclonal rearrangements at Tcrb were more prevalent in TLs from Trp53+/- Nucks1+/- mice, as was infiltration of primary TL cells to distant organs (liver, kidney and spleen). We propose that, in the context of Trp53 deficiency, wild type levels of Nucks1 are required to suppress radiation-induced TL, likely through the role of the NUCKS1 protein in the DNA damage response.


Subject(s)
Lymphoma/genetics , Neoplasms, Radiation-Induced/genetics , Nuclear Proteins/metabolism , Phosphoproteins/metabolism , Tumor Suppressor Protein p53/metabolism , Alleles , Animals , Antibodies, Monoclonal/chemistry , Comparative Genomic Hybridization , DNA Damage , Female , Gene Dosage , Genotype , Haploinsufficiency , Immunophenotyping , Kidney/metabolism , Liver/metabolism , Loss of Heterozygosity , Lymphoma/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neoplasms, Radiation-Induced/metabolism , Spleen/metabolism , Up-Regulation
14.
Nucleic Acids Res ; 43(20): 9817-34, 2015 Nov 16.
Article in English | MEDLINE | ID: mdl-26323318

ABSTRACT

NUCKS1 (nuclear casein kinase and cyclin-dependent kinase substrate 1) is a 27 kD chromosomal, vertebrate-specific protein, for which limited functional data exist. Here, we demonstrate that NUCKS1 shares extensive sequence homology with RAD51AP1 (RAD51 associated protein 1), suggesting that these two proteins are paralogs. Similar to the phenotypic effects of RAD51AP1 knockdown, we find that depletion of NUCKS1 in human cells impairs DNA repair by homologous recombination (HR) and chromosome stability. Depletion of NUCKS1 also results in greatly increased cellular sensitivity to mitomycin C (MMC), and in increased levels of spontaneous and MMC-induced chromatid breaks. NUCKS1 is critical to maintaining wild type HR capacity, and, as observed for a number of proteins involved in the HR pathway, functional loss of NUCKS1 leads to a slow down in DNA replication fork progression with a concomitant increase in the utilization of new replication origins. Interestingly, recombinant NUCKS1 shares the same DNA binding preference as RAD51AP1, but binds to DNA with reduced affinity when compared to RAD51AP1. Our results show that NUCKS1 is a chromatin-associated protein with a role in the DNA damage response and in HR, a DNA repair pathway critical for tumor suppression.


Subject(s)
Genomic Instability , Nuclear Proteins/physiology , Phosphoproteins/physiology , Recombinational DNA Repair , Cell Line , Chromatin/metabolism , Chromosome Aberrations , DNA/metabolism , DNA Damage , DNA Replication , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/physiology , HeLa Cells/physiology , Humans , Mitomycin/pharmacology , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phosphoproteins/chemistry , Phosphoproteins/genetics , Phosphoproteins/metabolism , Phosphorylation/radiation effects , RNA-Binding Proteins , Rad51 Recombinase/metabolism , S Phase/radiation effects , Sequence Homology, Amino Acid , X-Rays
15.
Mol Cell ; 59(2): 176-87, 2015 Jul 16.
Article in English | MEDLINE | ID: mdl-26145171

ABSTRACT

The tumor suppressor BRCA2 is thought to facilitate the handoff of ssDNA from replication protein A (RPA) to the RAD51 recombinase during DNA break and replication fork repair by homologous recombination. However, we find that RPA-RAD51 exchange requires the BRCA2 partner DSS1. Biochemical, structural, and in vivo analyses reveal that DSS1 allows the BRCA2-DSS1 complex to physically and functionally interact with RPA. Mechanistically, DSS1 acts as a DNA mimic to attenuate the affinity of RPA for ssDNA. A mutation in the solvent-exposed acidic domain of DSS1 compromises the efficacy of RPA-RAD51 exchange. Thus, by targeting RPA and mimicking DNA, DSS1 functions with BRCA2 in a two-component homologous recombination mediator complex in genome maintenance and tumor suppression. Our findings may provide a paradigm for understanding the roles of DSS1 in other biological processes.


Subject(s)
BRCA2 Protein/metabolism , Homologous Recombination , Proteasome Endopeptidase Complex/metabolism , Replication Protein A/metabolism , Amino Acid Substitution , BRCA2 Protein/genetics , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/therapy , Cell Line , Female , HeLa Cells , Humans , Models, Biological , Molecular Mimicry , Mutagenesis, Site-Directed , Nuclear Magnetic Resonance, Biomolecular , Proteasome Endopeptidase Complex/genetics , Protein Subunits , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Replication Protein A/chemistry , Replication Protein A/genetics
16.
Environ Mol Mutagen ; 56(1): 22-31, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25041929

ABSTRACT

The cytokinesis-block micronucleus (MN) assay was used to assess the genotoxicity of low doses of different types of space radiation. Normal human primary keratinocytes and immortalized keratinocytes grown in 2D monolayers each were exposed to graded doses of 0.3 or 1.0 GeV/n silicon ions or similar energies of iron ions. The frequencies of induced MN were determined and compared to γ-ray data. RBE(max) values ranged from 1.6 to 3.9 for primary keratinocytes and from 2.4 to 6.3 for immortalized keratinocytes. At low radiation doses ≤ 0.4 Gy, 0.3 GeV/n iron ions were the most effective at inducing MN in normal keratinocytes. An "over-kill effect" was observed for 0.3 GeV/n iron ions at higher doses, wherein 1.0 GeV/n iron ions were most efficient in inducing MN. In immortalized keratinocytes, 0.3 GeV/n iron ions produced MN with greater frequency than 1.0 GeV/n iron ions, except at the highest dose tested. MN formation was higher in immortalized keratinocytes than in normal keratinocytes for all doses and radiation qualities investigated. MN induction was also assessed in human keratinocytes cultured in 3D to simulate the complex architecture of human skin. RBE values for MN formation in 3D were reduced for normal keratinocytes exposed to iron ions, but were elevated for immortalized keratinocytes. Overall, MN induction was significantly lower in keratinocytes cultured in 3D than in 2D. Together, the results suggest that tissue architecture and immortalization status modulate the genotoxic response to space radiation, perhaps via alterations in DNA repair fidelity.


Subject(s)
Cell Proliferation/radiation effects , Epidermis/pathology , Fibroblasts/pathology , Gamma Rays/adverse effects , Keratinocytes/pathology , Micronuclei, Chromosome-Defective/radiation effects , Cell Culture Techniques , Cytokinesis/radiation effects , Dose-Response Relationship, Radiation , Epidermis/radiation effects , Fibroblasts/radiation effects , Humans , Immunoenzyme Techniques , Infant, Newborn , Keratinocytes/radiation effects , Micronucleus Tests
17.
DNA Repair (Amst) ; 24: 87-97, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25288561

ABSTRACT

RAD51-associated protein 1 (RAD51AP1) is critical for homologous recombination (HR) by interacting with and stimulating the activities of the RAD51 and DMC1 recombinases. In human somatic cells, knockdown of RAD51AP1 results in increased sensitivity to DNA damaging agents and to impaired HR, but the formation of DNA damage-induced RAD51 foci is unaffected. Here, we generated a genetic model system, based on chicken DT40 cells, to assess the phenotype of fully inactivated RAD51AP1 in vertebrate cells. Targeted inactivation of both RAD51AP1 alleles has no effect on either viability or doubling-time in undamaged cells, but leads to increased levels of cytotoxicity after exposure to cisplatin or to ionizing radiation. Interestingly, ectopic expression of GgRAD51AP1, but not of HsRAD51AP1 is able to fully complement in cell survival assays. Notably, in RAD51AP1-deficient DT40 cells the resolution of DNA damage-induced RAD51 foci is greatly slowed down, while their formation is not impaired. We also identify, for the first time, an important role for RAD51AP1 in counteracting both spontaneous and DNA damage-induced replication stress. In human and in chicken cells, RAD51AP1 is required to maintain wild type speed of replication fork progression, and both RAD51AP1-depleted human cells and RAD51AP1-deficient DT40 cells respond to replication stress by a slow-down of replication fork elongation rates. However, increased firing of replication origins occurs in RAD51AP1-/- DT40 cells, likely to ensure the timely duplication of the entire genome. Taken together, our results may explain why RAD51AP1 commonly is overexpressed in tumor cells and tissues, and we speculate that the disruption of RAD51AP1 function could be a promising approach in targeted tumor therapy.


Subject(s)
DNA Replication , DNA-Binding Proteins/genetics , Amino Acid Sequence , Animals , Cell Line/drug effects , Cell Line/radiation effects , Chickens , Cisplatin/pharmacology , DNA Damage/drug effects , DNA-Binding Proteins/metabolism , Gene Knockout Techniques , Genetic Complementation Test , Humans , Hydroxyurea/pharmacology , Molecular Sequence Data , RNA-Binding Proteins , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Radiation, Ionizing , Vertebrates/genetics
18.
J Biol Chem ; 287(15): 12343-7, 2012 Apr 06.
Article in English | MEDLINE | ID: mdl-22375013

ABSTRACT

Homologous recombination catalyzed by the RAD51 recombinase is essential for maintaining genome integrity upon the induction of DNA double strand breaks and other DNA lesions. By enhancing the recombinase activity of RAD51, RAD51AP1 (RAD51-associated protein 1) serves a key role in homologous recombination-mediated chromosome damage repair. We show here that RAD51AP1 harbors two distinct DNA binding domains that are both needed for maximal protein activity under physiological conditions. We have finely mapped the two DNA binding domains in RAD51AP1 and generated mutant variants that are impaired in either or both of the DNA binding domains. Examination of these mutants reveals that both domains are indispensable for RAD51AP1 function in cells. These and other results illuminate the mechanistic basis of RAD51AP1 action in homologous DNA repair.


Subject(s)
DNA Repair , DNA-Binding Proteins/chemistry , Amino Acid Sequence , Amino Acid Substitution , Conserved Sequence , DNA/chemistry , DNA-Binding Proteins/genetics , HeLa Cells , Humans , Mutagenesis, Site-Directed , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Mapping , Phenotype , Protein Binding , Protein Structure, Tertiary , RNA-Binding Proteins , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Sequence Deletion
SELECTION OF CITATIONS
SEARCH DETAIL