Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Neurol ; 221(1): 98-106, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19837066

ABSTRACT

Following central nervous system injury, astrocytes rapidly respond by undergoing a stereotypical pattern of molecular and morphological alterations termed "reactive" astrogliosis. We have reported previously that metallothioneins (MTs) are rapidly expressed by reactive astrocytes and that their secretion and subsequent interaction with injured neurons leads to improved neuroregeneration. We now demonstrate that exogenous MT induces a reactive morphology and elevated GFAP expression in cultured astrocytes. Furthermore, these astrogliotic hallmarks were mediated via JAK/STAT and RhoA signalling pathways. However, rather than being inhibitory, MT induced a form of astrogliosis that was permissive to neurite outgrowth and which was associated with decreased chondroitin sulphate proteoglycan (CSPG) expression. The results suggest that MT has an important role in mediating permissive astrocytic responses to traumatic brain injury.


Subject(s)
Astrocytes/drug effects , Metallothionein/pharmacology , Regeneration/drug effects , STAT Transcription Factors/metabolism , Signal Transduction/drug effects , rhoA GTP-Binding Protein/metabolism , Animals , Animals, Newborn , Astrocytes/physiology , Axons/drug effects , Axons/physiology , Cells, Cultured , Cerebral Cortex/cytology , Chondroitin Sulfate Proteoglycans/genetics , Chondroitin Sulfate Proteoglycans/metabolism , Enzyme Inhibitors/pharmacology , Glial Fibrillary Acidic Protein/metabolism , Metallothionein/deficiency , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/cytology , Neurons/physiology , Rats , Transforming Growth Factor beta1/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL