Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Magn Reson Imaging ; 59(2): 431-449, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37141288

ABSTRACT

Neurofluids is a term introduced to define all fluids in the brain and spine such as blood, cerebrospinal fluid, and interstitial fluid. Neuroscientists in the past millennium have steadily identified the several different fluid environments in the brain and spine that interact in a synchronized harmonious manner to assure a healthy microenvironment required for optimal neuroglial function. Neuroanatomists and biochemists have provided an incredible wealth of evidence revealing the anatomy of perivascular spaces, meninges and glia and their role in drainage of neuronal waste products. Human studies have been limited due to the restricted availability of noninvasive imaging modalities that can provide a high spatiotemporal depiction of the brain neurofluids. Therefore, animal studies have been key in advancing our knowledge of the temporal and spatial dynamics of fluids, for example, by injecting tracers with different molecular weights. Such studies have sparked interest to identify possible disruptions to neurofluids dynamics in human diseases such as small vessel disease, cerebral amyloid angiopathy, and dementia. However, key differences between rodent and human physiology should be considered when extrapolating these findings to understand the human brain. An increasing armamentarium of noninvasive MRI techniques is being built to identify markers of altered drainage pathways. During the three-day workshop organized by the International Society of Magnetic Resonance in Medicine that was held in Rome in September 2022, several of these concepts were discussed by a distinguished international faculty to lay the basis of what is known and where we still lack evidence. We envision that in the next decade, MRI will allow imaging of the physiology of neurofluid dynamics and drainage pathways in the human brain to identify true pathological processes underlying disease and to discover new avenues for early diagnoses and treatments including drug delivery. Evidence level: 1 Technical Efficacy: Stage 3.


Subject(s)
Brain , Magnetic Resonance Imaging , Animals , Humans , Rome , Brain/pathology , Extracellular Fluid , Meninges
2.
bioRxiv ; 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37693445

ABSTRACT

We discuss two potential non-invasive MRI methods to cross-sectionally study two distinct facets of the glymphatic system and its association with sleep and aging. We apply diffusion-based intravoxel incoherent motion (IVIM) imaging to evaluate pseudodiffusion coefficient, D*, or cerebrospinal fluid (CSF) movement across large spaces like the subarachnoid space (SAS). We also performed perfusion-based multi-echo, Hadamard encoded multi-delay arterial spin labeling (ASL) to evaluate whole brain cortical cerebral blood flow (CBF) and transendothelial exchange (Tex) of water from the vasculature into the perivascular space and parenchyma. Both methods were used in young adults (N=9, 6F, 23±3 years old) in the setting of sleep and sleep deprivation. To study aging, 10 older adults, (6F, 67±3 years old) were imaged after a night of normal sleep only and compared with the young adults. D* in SAS was significantly (p<0.05) lesser after sleep deprivation (0.014±0.001 mm2/s) than after normal sleep (0.016±0.001 mm2/s), but was unchanged with aging. Cortical CBF and Tex on the other hand, were unchanged after sleep deprivation but were significantly lower in older adults (37±3 ml/100g/min, 476±66 ms) than young adults (42±2 ml/100g/min, 624±66 ms). IVIM was thus, sensitive to sleep physiology and multi-echo, multi-delay ASL was sensitive to aging.

4.
Front Neurosci ; 16: 975305, 2022.
Article in English | MEDLINE | ID: mdl-36248645

ABSTRACT

Purpose: Conventional resting-state fMRI studies indicate that many cortical and subcortical regions have altered function in Alzheimer's disease (AD) but the nature of this alteration has remained unclear. Ultrafast fMRIs with sub-second acquisition times have the potential to improve signal contrast and enable advanced analyses to understand temporal interactions between brain regions as opposed to spatial interactions. In this work, we leverage such fast fMRI acquisitions from Alzheimer's disease Neuroimaging Initiative to understand temporal differences in the interactions between resting-state networks in 55 older adults with mild cognitive impairment (MCI) and 50 cognitively normal healthy controls. Methods: We used a sliding window approach followed by k-means clustering. At each window, we computed connectivity i.e., correlations within and across the regions of the default mode, salience, dorsal attention, and frontoparietal network. Visual and somatosensory networks were excluded due to their lack of association with AD. Using the Davies-Bouldin index, we identified clusters of windows with distinct connectivity patterns, also referred to as brain states. The fMRI time courses were converted into time courses depicting brain state transition. From these state time course, we calculated the dwell time for each state i.e., how long a participant spent in each state. We determined how likely a participant transitioned between brain states. Both metrics were compared between MCI participants and controls using a false discovery rate correction of multiple comparisons at a threshold of. 0.05. Results: We identified 8 distinct brain states representing connectivity within and between the resting state networks. We identified three transitions that were different between controls and MCI, all involving transitions in connectivity between frontoparietal, dorsal attention, and default mode networks (p<0.04). Conclusion: We show that ultra-fast fMRI paired with dynamic functional connectivity analysis allows us to capture temporal transitions between brain states. Most changes were associated with transitions between the frontoparietal and dorsal attention networks connectivity and their interaction with the default mode network. Although future work needs to validate these findings, the brain networks identified in our work are known to interact with each other and play an important role in cognitive function and memory impairment in AD.

5.
Radiology ; 300(3): 559-569, 2021 09.
Article in English | MEDLINE | ID: mdl-34128720

ABSTRACT

Background Linear gadolinium-based contrast agents (GBCAs) are known to be retained at higher levels of gadolinium than macro-cyclic GBCAs. However, very little is known regarding their relative elimination rates and retained fraction of injected gadolinium. Purpose To quantify and compare gadolinium retention and elimination rates in human brain tissue, skin, and bone obtained from cadavers exposed to single-agent administration of either gadoteridol (macrocyclic GBCA) or gadobenate dimeglumine (linear GBCA). Materials and Methods Autopsy cases from August 2014 to July 2019 of patients exposed to a single type of GBCA, either gadoteridol or gadobenate dimeglumine, either single or multiple doses, were included. Gadolinium levels in the brain, skin, and bone were analyzed with inductively coupled plasma mass spectrometry. Linear regression was used to compare gadolinium retention between agents and estimate elimination rates of the retained gadolinium using the time between last injection and death. Results Twenty-eight cadavers with gadoteridol exposure and nine with gadobenate dimeglumine exposure were identified (22 men; age range, 19-83 years). The median gadolinium retention of gadobenate dimeglumine was 3.0-6.5 times higher than that of gadoteridol in the brain (P < .02), 4.4 times higher in bone (P = .002), and 2.9 times higher in skin (P = .05). Gadolinium retention in the globus pallidus (GP), dentate nucleus (DN), white matter (WM), bone, and skin decreased with time elapsed from last administration to death in both the gadobenate dimeglumine (GP: -3% per twofold increase in time, P = .69; DN: -2%, P = .83; WM: -20%, P = .01; bone: -22%, P = .07; skin: -47%, P < .001) and gadoteridol (GP: -17%, P = .11; DN: -16%, P = .15; WM: -30%, P < .001; bone: -11%, P = .16; skin: -24%, P = .01) groups (P values for elimination are compared with a null hypothesis of no elimination). Conclusion The linear agent gadobenate dimeglumine retains several-fold higher levels of gadolinium in the brain and bone compared with the macrocyclic agent gadoteridol. Nonzero elimination of retained gadolinium was detected in the white matter and skin for both agents. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Tweedle in this issue.


Subject(s)
Heterocyclic Compounds/pharmacokinetics , Meglumine/analogs & derivatives , Organometallic Compounds/pharmacokinetics , Adult , Aged , Aged, 80 and over , Bone and Bones/metabolism , Brain/metabolism , Cadaver , Contrast Media/pharmacokinetics , Female , Gadolinium/pharmacokinetics , Humans , Male , Meglumine/pharmacokinetics , Middle Aged , Skin/metabolism , Spectrophotometry, Atomic
SELECTION OF CITATIONS
SEARCH DETAIL
...