Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
ACS Omega ; 9(6): 6423-6431, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38371822

ABSTRACT

Food waste and loss generate significant waste such as spent coffee grounds (SCGs) from coffee consumption. These byproducts can be valorized by following circular economy and bioeconomy principles, e.g., using SCGs in polymer-based composites for 3D printing. Although desktop-size material extrusion additive manufacturing is increasingly adopted for biomass-polymer-based composites, the potential of large-format direct extrusion 3D printing systems remains unexplored. This work investigated the thermal, rheological, and mechanical properties of PLA/SCG composites for applications with a large-format pellet extrusion 3D printer. The formulations exhibit minimal degradation at typical 3D printing temperatures of PLA, i.e., ∼190 °C, and limited effects on crystallinity by increasing the SCG weight percentage. The decrease in viscosity due to SCGs improves the printability and layer adhesion, as confirmed by the tensile test results, such as higher ultimate tensile strength and elongation at break values compared to those of the state-of-the-art values. Using pellet feedstocks contributes to limiting the effects of thermomechanical degradation by reducing raw material processing, i.e., avoiding filament extrusion. Using PLA/SCGs formulations was demonstrated through 3D printed complex parts with nonplanar slicing techniques, including a large-scale furniture product, validating large-format pellet extrusion 3D printers for scaling up the use of biomass-filled polymers.

2.
Polymers (Basel) ; 16(3)2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38337321

ABSTRACT

This study explores the potential of novel boron nitride (BN) microplatelet composites with combined thermal conduction and electrical insulation properties. These composites are manufactured through Fusion Deposition Modeling (FDM), and their application for thermal management in electronic devices is demonstrated. The primary focus of this work is, therefore, the investigation of the thermoplastic composite properties to show the 3D printing of lightweight polymeric heat sinks with remarkable thermal performance. By comparing various microfillers, including BN and MgO particles, their effects on material properties and alignment within the polymer matrix during filament fabrication and FDM processing are analyzed. The characterization includes the evaluation of morphology, thermal conductivity, and mechanical and electrical properties. Particularly, a composite with 32 wt% of BN microplatelets shows an in-plane thermal conductivity of 1.97 W m-1 K-1, offering electrical insulation and excellent printability. To assess practical applications, lightweight pin fin heat sinks using these composites are designed and 3D printed. Their thermal performance is evaluated via thermography under different heating conditions. The findings are very promising for an efficient and cost-effective fabrication of thermal devices, which can be obtained through extrusion-based Additive Manufacturing (AM), such as FDM, and exploited as enhanced thermal management solutions in electronic devices.

3.
Polymers (Basel) ; 15(8)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37111995

ABSTRACT

Polylactic acid (PLA) is one of the most important biopolymers employed on the market due to its good mechanical strength and barrier properties. On the other hand, this material presents a rather low flexibility, limiting its employment. The valorization of bio-based agro-food waste for the modification of bioplastics is a highly appealing approach for the replacement of petrol-based materials. The aim of this work is to employ cutin fatty acids derived from a biopolymer (i.e., cutin), present in waste tomato peels and its bio-based derivatives as new plasticizers to enhance PLA flexibility. In particular, pure 10,16-dihydroxy hexadecanoic acid was extracted and isolated from tomato peels and then functionalized to give the desired compounds. All the molecules developed in this study were characterized by NMR and ESI-MS. Blends at different concentrations (10, 20, 30, and 40% w/w) the flexibility (Tg measurements with differential scanning calorimetry-DSC) of the final material. Furthermore, the physical behavior of two blends obtained by mechanical mixing of PLA and 16-methoxy,16-oxohexadecane-1,7-diyl diacetate was investigated through thermal and tensile tests. The data collected by DSC show a lowering in the Tg of all the blends of PLA with functionalized fatty acids, in comparison with pure PLA. Lastly, the tensile tests highlighted how PLA blended with 16-methoxy,16-oxohexadecane-1,7-diyl diacetate (20% w/w) can efficiently enhance its flexibility.

4.
Materials (Basel) ; 15(18)2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36143554

ABSTRACT

An ever-growing amount of composite waste will be generated in the upcoming years. New circular strategies based on 3D printing technologies are emerging as potential solutions although 3D-printed products made of recycled composites may require post-processing. Metallization represents a viable way to foster their exploitation for new applications. This paper shows the use of physical vapor deposition sputtering for the metallization of recycled glass fiber-reinforced polymers processed by UV-assisted 3D printing. Different batches of 3D-printed samples were produced, post-processed, and coated with a chromium metallization layer to compare the results before and after the metallization process and to evaluate the quality of the finishing from a qualitative and quantitative point of view. The analysis was conducted by measuring the surface gloss and roughness, analyzing the coating morphology and thickness through the Scanning Electron Microscopy (SEM) micrographs of the cross-sections, and assessing its adhesion with cross-cut tests. The metallization was successfully performed on the different 3D-printed samples, achieving a good homogeneity of the coating surface. Despite the influence of the staircase effect, these results may foster the investigation of new fields of application, as well as the use of different polymer-based composites from end-of-life products, i.e., carbon fiber-reinforced polymers.

5.
Clin Exp Dent Res ; 8(3): 715-720, 2022 06.
Article in English | MEDLINE | ID: mdl-35441495

ABSTRACT

OBJECTIVES: Despite a large amount of materials and methods to make an implant-supported denture, nowadays there is no gold standard. Every solution has pros and cons that guide the clinician and the technician to choose the best solution for a single case. The aim of this study was to evaluate the mechanical characteristics of the fiber-reinforced composite superstructure made by using a novel three-dimensional (3D) printing technology able to create a reinforcing structure patient-specific, more reliable, structurally optimized, and faster than conventional methods. MATERIALS AND METHODS: To evaluate mechanical performances of 3D-printed fiberglass, mechanical characterization of 3D-printed material was performed. Before proceeding with the realization of the final prosthesis, five specimens were created on which the tensile test and volumetric fiber content measurement were performed. Then denture reinforcement 3D printing process began. Initially, the robot prints layers of fiber. Finally, the obtained 3D-printed reinforcement structure was finalized in the lab. RESULTS: The prosthesis obtained through this process was lighter than a traditional prosthesis, there was a greater chemical adhesion between resin and 3D-printed reinforcement structure and a better result was obtained from an esthetic point of view. CONCLUSIONS: The outcomes we obtained endorse its performance both mechanical and esthetic. The entire process is automatic and does not require human operation thanks to specific software programming.


Subject(s)
Dental Implants , Dental Prosthesis, Implant-Supported , Glass , Humans , Pilot Projects , Printing, Three-Dimensional
6.
Front Bioeng Biotechnol ; 9: 692648, 2021.
Article in English | MEDLINE | ID: mdl-34722474

ABSTRACT

Targeted drug delivery from untethered microrobots is a topic of major interest in current biomedical research. The possibility to load smart materials able to administer active principles on remotely in vivo guidable microdevices constitutes one of the most attractive opportunities to overcome the drawbacks of classical untargeted delivery methodologies. Hydrogels, in particular, are ideal candidates as drug-carrying materials due to their biocompatibility, low cost, and ease of manufacturing. On the other hand, these polymers suffer from poor control over release rate and overall released amount. Starting from these premises, the present article demonstrates the possibility to tune the release of hydrogels applied on magnetically steerable microrobots by fabricating microsystems via layer-by-layer self-assembly. By doing this, the diffusion of chemicals from the hydrogel layers to the external environment can be optimized and the phenomenon of burst release can be strongly limited. The microrobotic platforms employed to transport the hydrogel active material are fabricated by employing 3D printing in combination with wet metallization and present a gold layer on their surface to enhance biocompatibility. The maneuverability of microdevices coated with both thin and thick multilayers is investigated, individuating optimized parameters for efficient actuation.

7.
ACS Omega ; 6(24): 15892-15902, 2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34179633

ABSTRACT

Polymeric materials with a low dielectric constant are widely used in the electronic industry due to their properties. In particular, polymer adhesives can be used in many applications such as wafer bonding and three-dimensional integration. Benzocyclobutene (BCB) is a very interesting material thanks to its excellent bonding behavior and dielectric properties. Usually, BCB is applied by spin-coating, although this technology does not allow the fabrication of complex patterns. To obtain complex patterns, it is necessary to use a printing technology, such as inkjet printing. However, inkjet printing of BCB-based inks has not yet been investigated. Here, we show the feasibility of printing complex patterns with a BCB-based ink, reaching a resolution of 130 µm. We demonstrate that with a proper dilution, BCB-based inks enter the printability window and drop ejection is achieved without the formation of satellite drops. In addition, we present the conditions in which there is an appearance of the coffee ring effect. Inks that feature a too high interaction with the substrate are more likely to show the coffee ring effect, deteriorating the printing quality. We also observe that it is possible to achieve a better film uniformity by increasing the number of printed layers, due to redissolution of the BCB-based polymer that helps to level possible inhomogeneities. Our work represents the starting point for an in-depth study of BCB-based polymer fabrication using jet printing technologies, as a comparison of the bonding quality obtained with different materials and different technologies could give more information and broaden the perspective regarding this field.

8.
Polymers (Basel) ; 13(5)2021 Feb 27.
Article in English | MEDLINE | ID: mdl-33673468

ABSTRACT

Despite the growing global interest in 3D printed carbon fiber reinforced polymers, most of the applications are still limited to high-performance sectors due to the low effectiveness-cost ratio of virgin carbon fibers. However, the use of recycled carbon fibers in 3D printing is almost unexplored, especially for thermoset-based composites. This paper aims to demonstrate the feasibility of recycled carbon fibers 3D printing via UV-assisted direct ink writing. Pyrolyzed recycled carbon fibers with a sizing treatment were firstly shredded to be used as a reinforcement of a thermally and photo-curable acrylic resin. UV-differential scanning calorimetry analyses were then performed to define the material crosslinking of the 3D printable ink. Because of the poor UV reactivity of the resin loaded with carbon fibers, a rheology modifier was added to guarantee shape retention after 3D printing. Thanks to a customized 3D printer based on a commercial apparatus, a batch of specimens was successfully 3D printed. According to the tensile tests and Scanning Electron Microscopy analysis, the material shows good mechanical properties and the absence of layer marks related to the 3D printing. These results will, therefore, pave the way for the use of 3D printed recycled carbon fiber reinforced polymers in new fields of application.

9.
Biofabrication ; 13(3)2021 04 08.
Article in English | MEDLINE | ID: mdl-33578401

ABSTRACT

Cell seeding on 3D scaffolds is a very delicate step in tissue engineering applications, influencing the outcome of the subsequent culture phase, and determining the results of the entire experiment. Thus, it is crucial to maximize its efficiency. To this purpose, a detailed study of the influence of the geometry of the scaffold fibers on dynamic seeding efficiency is presented. 3D printing technology was used to realize polylactic acid porous scaffolds, formed by fibers with a non-circular cross-sectional geometry, named multilobed to highlight the presence of niches and ridges. An oscillating perfusion bioreactor was used to perform bidirectional dynamic seeding of MG63 cells. The fiber shape influences the fluid dynamic parameters of the flow, affecting values of fluid velocity and wall shear stress. The path followed by cells through the scaffold fibers is also affected and results in a larger number of adhered cells in multilobed scaffolds compared to scaffolds with standard pseudo cylindrical fibers. Geometrical and fluid dynamic features can also have an influence on the morphology of adhered cells. The obtained results suggest that the reciprocal influence of geometrical and fluid dynamic features and their combined effect on cell trajectories should be considered to improve the dynamic seeding efficiency when designing scaffold architecture.


Subject(s)
Tissue Engineering , Tissue Scaffolds , Bioreactors , Porosity , Printing, Three-Dimensional
10.
Materials (Basel) ; 13(16)2020 Aug 11.
Article in English | MEDLINE | ID: mdl-32796697

ABSTRACT

Despite the large use of composites for industrial applications, their end-of-life management is still an open issue for manufacturing, especially in the wind energy sector. Additive manufacturing technology has been emerging as a solution, enhancing circular economy models, and using recycled composites for glass fiber-reinforced polymers is spreading as a new additive manufacturing trend. Nevertheless, their mechanical properties are still not comparable to pristine materials. The purpose of this paper is to examine the additive re-manufacturing of end-of-life glass fiber composites with mechanical performances that are comparable to virgin glass fiber-reinforced materials. Through a systematic characterization of the recyclate, requirements of the filler for the liquid deposition modeling process were identified. Printability and material surface quality of different formulations were analyzed using a low-cost modified 3D printer. Two hypothetical design concepts were also manufactured to validate the field of application. Furthermore, an understanding of the mechanical behavior was accomplished by means of tensile tests, and the results were compared with a benchmark formulation with virgin glass fibers. Mechanically recycled glass fibers show the capability to substitute pristine fillers, unlocking their use for new fields of application.

11.
Materials (Basel) ; 12(9)2019 May 07.
Article in English | MEDLINE | ID: mdl-31067771

ABSTRACT

The aim of this work was to develop new bioplastic compounds from wheat gluten, biobased plasticizers (glycerol, octanoic acid and 1,4-butanediol), and microalgal biomass as a filler. The effects of the composition on tensile properties, thermal stability, and water sensitivity were investigated. Microalgal biomass was added with the selected quantities: 10, 20, and 30 per hundred parts (php). Mechanical mixing of the components, i.e., gluten, plasticizer, and microalgae, was followed by molding in a hot press. Microlgal filler improved mechanical properties of the plasticized gluten material: in samples plasticized with 1,4-butanediol, 30 php of biomass increased the tensile modulus by nearly one order of magnitude, from 36.5 MPa to 273.1 MPa, and it also increased the tensile strength from 3.3 MPa to 4.9 MPa. The introduction of microalgal biomass slightly increased the surface sensitivity against water: 30 php of biomass reduced the water contact angle from 41° to 22° in samples plasticized with glycerol, but the biomass lowered the overall water absorption kinetics for material with each plasticizer. Microalgal biomass proved therefore to be an interesting sustainable resource with which to develop materials based on gluten, in particular to increase the mechanical properties of the compounds without reducing thermal stability or water resistance.

12.
Materials (Basel) ; 12(7)2019 Mar 27.
Article in English | MEDLINE | ID: mdl-30934665

ABSTRACT

This paper deals with the additive manufacturing of metakaolin-based geopolymers and with the use of microalgal biomass from wastewater treatment plants as biofiller in this kind of cementitious material. The study was developed following the evolution stages of the material, which was prepared and printed as a soft paste and then hardened thanks to an inorganic polymerization reaction (geopolymerization). Thus, the characterization techniques adopted encompassed rheometry, mechanical tests performed on the hardened material, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and mercury intrusion porosimetry (MIP). Microalgal biomass addition, evaluated in this study at 1, 3 and 5 php with respect to the powder weight, affected both the properties of the fresh and of the hardened material. Regarding the former aspect, biomass reduced the yield stress of the pastes, improving the ease of the extrusion process, but potentially worsening the ability to build structures in height. When hardened, geopolymers containing microalgae showed mechanical properties comparable to the unfilled material and a microstructure characterized by smaller pores. Finally, a printing test was successfully performed with a larger printer to assess the feasibility of producing large-scale structures. Taking into account these results, this study demonstrates the possibility of using microalgal biomass as biofiller in geopolymers for additive manufacturing.

13.
Small ; 14(1)2018 01.
Article in English | MEDLINE | ID: mdl-29141120

ABSTRACT

The present work reports the first demonstration of straightforward fabrication of monolithic unibody lab-on-a-chip (ULOCs) integrating bioactive micrometric 3D scaffolds by means of multimaterial stereolithography (SL). To this end, a novel biotin-conjugated photopolymer is successfully synthesized and optimally formulated to achieve high-performance SL-printing resolution, as demonstrated by the SL-fabrication of biotinylated structures smaller than 100 µm. By optimizing a multimaterial single-run SL-based 3D-printing process, such biotinylated microstructures are incorporated within perfusion microchambers whose excellent optical transparency enables real-time optical microscopy analyses. Standard biotin-binding assays confirm the existence of biotin-heads on the surfaces of the embedded 3D microstructures and allow to demonstrate that the biofunctionality of biotin is not altered during the SL-printing, thus making it exploitable for further conjugation with other biomolecules. As a step forward, an in-line optical detection system is designed, prototyped via SL-printing and serially connected to the perfusion microchambers through customized world-to-chip connectors. Such detection system is successfully employed to optically analyze the solution flowing out of the microchambers, thus enabling indirect quantification of the concentration of target interacting biomolecules. The successful application of this novel biofunctional photopolymer as SL-material enables to greatly extend the versatility of SL to directly fabricate ULOCs with intrinsic biofunctionality.


Subject(s)
Lab-On-A-Chip Devices , Printing, Three-Dimensional , Stereolithography , Photochemistry , Polymers/chemistry
14.
ACS Appl Mater Interfaces ; 8(39): 26332-26342, 2016 Oct 05.
Article in English | MEDLINE | ID: mdl-27610704

ABSTRACT

In the present work, prototypes of polymeric cantilever-based magnetic microstructures were fabricated by means of stereolithography (SL). To this end, a UV-curable system suitable for high-resolution SL-processing was formulated by blending a bifunctional acrylic monomer with photoinitiator and visible dye whose content was tuned to tailor resin SL sensitivity. Subsequently, to confer ferromagnetic properties to the photopolymer, two different strategies were implemented. A two-step approach involved selective deposition of a metal layer on photopolymer SL-cured surfaces through an electroless plating process. On the other hand, SL-processable ferromagnetically responsive nanocomposites (FRCs) were obtained by directly loading magnetite nanoparticles within the photopolymer matrix. In order to achieve high-printing resolution, resin SL sensitivities were studied as a function of the various additives contents. Photocalorimetric analyses were also performed to investigate the photopolymer conversion efficiency upon light exposure. High-performing formulations were characterized by reduced penetration depth (<50 µm) and small critical energies thus enabling for fast printing of micrometric structures. Finally, the self-standing characteristics of the resin combined with the layered-fashion deposition typical of the 3D printing technologies were exploited for the fabrication of cantilever (CL)-based beams presented as possible magnetic sensors. As a demonstration of the feasibility of the two approaches, the magnetic beams were successfully actuated and their sensing performances in terms of static deflection vs applied magnetic field applied were qualitatively studied. Being not restricted to CL-based geometries, the combination of SL-printing with the formulation of novel smart photopolymers open the way toward the fabrication of high-customized complex 3D models integrating functional microstructures.

15.
Colloids Surf B Biointerfaces ; 146: 250-9, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27351136

ABSTRACT

A simple method for constructing versatile ordered biotin/avidin arrays on UV-curable perfluoropolyethers (PFPEs) is presented. The goal is the realization of a versatile platform where any biotinylated biological ligands can be further linked to the underlying biotin/avidin array. To this end, microcontact arrayer and microcontact printing technologies were developed for photobiotin direct printing on PFPEs. As attested by fluorescence images, we demonstrate that this photoactive form of biotin is capable of grafting onto PFPEs surfaces during irradiation. Bioaffinity conjugation of the biotin/avidin system was subsequently exploited for further self-assembly avidin family proteins onto photobiotin arrays. The excellent fouling release PFPEs surface properties enable performing avidin assembly step simply by arrays incubation without PFPEs surface passivation or chemical modification to avoid unspecific biomolecule adsorption. Finally, as a proof of principle biotinylated heparin was successfully grafted onto photobiotin/avidin arrays.


Subject(s)
Avidin/chemistry , Azides/chemistry , Biofouling , Biotin/analogs & derivatives , Ethers/chemistry , Fluorocarbons/chemistry , Heparin/chemistry , Photochemical Processes , Polymers/chemistry , Biotin/chemistry , Biotinylation , Fluorescence , Surface Properties
16.
Mater Sci Eng C Mater Biol Appl ; 62: 414-22, 2016 May.
Article in English | MEDLINE | ID: mdl-26952441

ABSTRACT

A simple photolithographic process for directly patterning glycidyl methacrylate modified hyaluronic acid features onto UV curable perfluoropolyether-based surfaces is presented. Due to the versatility of the developed method, HA spotted areas with different geometrical features could be rapidly and inexpensively designed. In addition, the excellent antifouling and fouling-release properties of the substrates enabled direct HA baits photo-grafting onto PFPEs without further surface passivation or chemical modification to avoid not specific adsorption. The aim of the study was to locally switch the surface properties of the PFPEs from cells and protein repulsive to adherent. Particularly, we exploited HA well-known preferential interactions with CD44 transmembrane receptors to selectively immobilize cancer cells. Living cell arrays offer a higher-resolution visualization of HA-CD44 interactions and may provide a deep insight into understanding molecular mechanisms needed to develop selective therapies and diagnosis against tumor growth.


Subject(s)
Ethers/chemistry , Fluorocarbons/chemistry , Hyaluronic Acid/chemistry , Osteosarcoma/metabolism , Photochemical Processes , Cell Line, Tumor , Cells, Immobilized/metabolism , Humans
17.
Materials (Basel) ; 9(7)2016 Jul 16.
Article in English | MEDLINE | ID: mdl-28773704

ABSTRACT

Glass (GFR) and carbon fiber-reinforced (CFR) dual-cure polymer composites fabricated by UV-assisted three-dimensional (UV-3D) printing are presented. The resin material combines an acrylic-based photocurable resin with a low temperature (140 °C) thermally-curable resin system based on bisphenol A diglycidyl ether as base component, an aliphatic anhydride (hexahydro-4-methylphthalic anhydride) as hardener and (2,4,6,-tris(dimethylaminomethyl)phenol) as catalyst. A thorough rheological characterization of these formulations allowed us to define their 3D printability window. UV-3D printed macrostructures were successfully demonstrated, giving a clear indication of their potential use in real-life structural applications. Differential scanning calorimetry and dynamic mechanical analysis highlighted the good thermal stability and mechanical properties of the printed parts. In addition, uniaxial tensile tests were used to assess the fiber reinforcing effect on the UV-3D printed objects. Finally, an initial study was conducted on the use of a sizing treatment on carbon fibers to improve the fiber/matrix interfacial adhesion, giving preliminary indications on the potential of this approach to improve the mechanical properties of the 3D printed CFR components.

18.
J Mech Behav Biomed Mater ; 29: 309-16, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24140731

ABSTRACT

Chemically crosslinked hyaluronic acid hydrogels are synthesized with a homogeneous crosslinking process using divinyl sulfone (DVS) as crosslinking agent. Testing different conditions, in terms of both DVS content and curing time, we aim to keep control over the crosslinking process in order to prepare biocompatible hydrogels with mechanical properties closely approximating those of extracellular matrix (ECM) of natural stem cells niches (0.1÷50kPa). The hydrogels properties are evaluated through a reliable methodology based on three independent techniques: dynamic rheological analysis, used as benchmark method; swelling experiments following the Flory-Rehner theory and atomic force microscope (AFM) nanoindentation experiments. Our results demonstrate that controlling crosslinking parameters it is possible to design hydrogels with desired elastic moduli values. HA hydrogels can be ideal coating materials to be implemented in regenerative medicine and particularly in the engineering of ECM niches in vitro.


Subject(s)
Biomimetic Materials/chemistry , Hyaluronic Acid/chemistry , Hydrogels/chemistry , Materials Testing , Mechanical Phenomena , Regenerative Medicine/methods , Microscopy, Atomic Force , Rheology , Sulfones/chemistry
19.
ACS Appl Mater Interfaces ; 5(14): 6628-34, 2013 Jul 24.
Article in English | MEDLINE | ID: mdl-23841485

ABSTRACT

This article describes the synthesis, characterization, and application of new UV-absorbing microcapsules encapsulating a UV-responsive photochromic dye for application in the damage-sensing field. Microcapsules filled with a photochromic spiropyran, dissolved in sunflower oil as core material, were synthesized by reacting a TDI-based polyisocyanate prepolymer with a benzophenone-based amine to obtain robust UV-absorbing polyurea shells. The newly synthesized UV-screening microcapsules were embedded into a photoresist to realize a new mechanoresponsive polymer. After scratching the coating, the UV-screening microcapsules break and the UV-sensitive core material is released and diffuses into the polymer matrix. Upon exposure to UV-A light, a rapid color change in the region where the damage was made is observed, because of the photoinduced transition of spiropyran to the plane merocyanine form. The novelty of the approach presented in this work lies in the possibility to convert any type of conventional polymeric coating into a UV-light-sensitive mechanoresponsive smart coating by simple addition of our new UV-screening microcapsules.

20.
Langmuir ; 29(1): 426-31, 2013 Jan 08.
Article in English | MEDLINE | ID: mdl-23205584

ABSTRACT

Two-photon polymerization technology has been used to fabricate submicrometer three-dimensional (3D) structures using a new polyfunctional perfluoropolyether-based resist, which is a polymer intrinsically hydrophobic and chemically resistant. The fluorinated resist was designed and synthesized in this work and successfully employed to fabricate woodpile structures in various experimental conditions. This is the first demonstration of the capability to fabricate hydrophobic and chemically resistant 3D structures with submicrometer resolution and arbitrary geometry.

SELECTION OF CITATIONS
SEARCH DETAIL
...