Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Phys Med Biol ; 61(21): 7639-7651, 2016 11 07.
Article in English | MEDLINE | ID: mdl-27740946

ABSTRACT

Time of flight (TOF) and depth of interaction (DOI) capabilities can significantly enhance the quality and uniformity of positron emission tomography (PET) images. Many proposed TOF/DOI PET detectors require complex readout systems using additional photosensors, active cooling, or waveform sampling. This work describes a high performance, low complexity, room temperature TOF/DOI PET module. The module uses multiplexed timing channels to significantly reduce the electronic readout complexity of the PET detector while maintaining excellent timing, energy, and position resolution. DOI was determined using a two layer light sharing scintillation crystal array with a novel binary position sensitive network. A 20 mm effective thickness LYSO crystal array with four 3 mm × 3 mm silicon photomultipliers (SiPM) read out by a single timing channel, one energy channel and two position channels achieved a full width half maximum (FWHM) coincidence time resolution of 180 ± 2 ps with 10 mm of DOI resolution and 11% energy resolution. With sixteen 3 mm × 3 mm SiPMs read out by a single timing channel, one energy channel and four position channels a coincidence time resolution 204 ± 1 ps was achieved with 10 mm of DOI resolution and 15% energy resolution. The methods presented here could significantly simplify the construction of high performance TOF/DOI PET detectors.


Subject(s)
Positron-Emission Tomography/instrumentation , Positron-Emission Tomography/methods , Radiometry/instrumentation , Silicon/chemistry , Algorithms , Electronics , Humans , Image Interpretation, Computer-Assisted
2.
Phys Med Biol ; 61(16): N427-40, 2016 08 21.
Article in English | MEDLINE | ID: mdl-27484131

ABSTRACT

Multiplexing many SiPMs to a single readout channel is an attractive option to reduce the readout complexity of high performance time of flight (TOF) PET systems. However, the additional dark counts and shaping from each SiPM cause significant baseline fluctuations in the output waveform, degrading timing measurements using a leading edge threshold. This work proposes the use of a simple analog filtering network to reduce the baseline fluctuations in highly multiplexed SiPM readouts. With 16 SiPMs multiplexed, the FWHM coincident timing resolution for single [Formula: see text] mm LYSO crystals was improved from 401 ± 4 ps without filtering to 248 ± 5 ps with filtering. With 4 SiPMs multiplexed, using an array of [Formula: see text] mm LFS crystals the mean time resolution was improved from 436 ± 6 ps to 249 ± 2 ps. Position information was acquired with a novel binary positioning network. All experiments were performed at room temperature with no active temperature regulation. These results show a promising technique for the construction of high performance multiplexed TOF PET readout systems using analog leading edge timing pickoff.


Subject(s)
Amplifiers, Electronic , Filtration/instrumentation , Positron-Emission Tomography/instrumentation , Scintillation Counting/instrumentation , Silicon/chemistry , Tomography, X-Ray Computed/instrumentation , Humans , Positron-Emission Tomography/methods , Scintillation Counting/methods , Tomography, X-Ray Computed/methods
3.
Phys Med Biol ; 61(7): 2879-92, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-26987898

ABSTRACT

Using time of flight (ToF) measurements for positron emission tomography (PET) is an attractive avenue for increasing the signal to noise (SNR) ratio of PET images. However, achieving excellent time resolution required for high SNR gain using silicon photomultipliers (SiPM) requires many resource heavy high bandwidth readout channels. A method of multiplexing many SiPM signals into a single electronic channel would greatly simplify ToF PET systems. However, multiplexing SiPMs degrades time resolution because of added dark counts and signal shaping. In this work the relative contribution of dark counts and signal shaping to timing degradation is simulated and a baseline correction technique to mitigate the effect of multiplexing on the time resolution of analog SiPMs is simulated and experimentally verified. A charge sharing network for multiplexing is proposed and tested. Results show a full width at half maximum (FWHM) coincidence time resolution of [Formula: see text] ps for a single 3 mm × 3 mm × 20 mm LYSO scintillation crystals coupled to an array of sixteen 3 mm × 3 mm SiPMs that are multiplexed to a single timing channel (in addition to 4 position channels). A [Formula: see text] array of 3 mm × 3 mm × 20 mm LFS crystals showed an average FWHM coincidence time resolution of [Formula: see text] ps using the same timing scheme. All experiments were performed at room temperature with no thermal regulation. These results show that excellent time resolution for ToF can be achieved with a highly multiplexed analog SiPM readout.


Subject(s)
Scintillation Counting/instrumentation , Electronics , Positron-Emission Tomography/methods , Scintillation Counting/methods , Silicon/chemistry , Tomography, X-Ray Computed/methods
4.
Phys Med Biol ; 60(9): 3795-806, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25905626

ABSTRACT

The design of combined positron emission tomography/magnetic resonance (PET/MR) systems presents a number of challenges to engineers, as it forces the PET system to acquire data in a space constrained environment that is sensitive to electro-magnetic interference and contains high static, radio frequency and gradient fields. In this work we validate fast timing performance of a PET scintillation detector using a potentially very compact, very low power, and MR compatible readout method in which analog silicon photomultipliers (SiPM) signals are transmitted optically away from the MR bore with little or even no additional readout electronics. This analog 'electro-optial' method could reduce the entire PET readout in the MR bore to two compact, low power components (SiPMs and lasers). Our experiments show fast timing performance from analog electro-optical readout with and without pre-amplification. With 3 mm × 3 mm × 20 mm lutetium-yttrium oxyorthosilicate (LYSO) crystals and Excelitas SiPMs the best two-sided fwhm coincident timing resolution achieved was 220 +/- 3 ps in electrical mode, 230 +/- 2 ps in electro-optical with preamp mode, and 253 +/- 2 ps in electro-optical without preamp mode. Timing measurements were also performed with Hamamatsu SiPMs and 3 mm × 3 mm × 5 mm crystals. In the future the timing degradation seen can be further reduced with lower laser noise or improvements SiPM rise time or gain.


Subject(s)
Amplifiers, Electronic , Magnetic Resonance Imaging/instrumentation , Multimodal Imaging/instrumentation , Positron-Emission Tomography/instrumentation , Lutetium/chemistry , Magnetic Resonance Imaging/methods , Multimodal Imaging/methods , Positron-Emission Tomography/methods , Sensitivity and Specificity , Silicates/chemistry , Silicon/chemistry , Time Factors
5.
Phys Med Biol ; 59(11): 2599-621, 2014 Jun 07.
Article in English | MEDLINE | ID: mdl-24786208

ABSTRACT

We are developing a 1 mm resolution small animal positron emission tomography (PET) system using 3D positioning cadmium zinc telluride photon detectors comprising 40 mm × 40 mm × 5 mm crystals metalized with a cross-strip electrode pattern with a 1 mm anode strip pitch. We optimized the electrode pattern design for intrinsic sensitivity and spatial, energy and time resolution performance using a test detector comprising cathode and steering electrode strips of varying dimensions. The study found 3 and 5 mm width cathode strips locate charge-shared photon interactions near cathode strip boundaries with equal precision. 3 mm width cathode strips exhibited large time resolution variability as a function of photon interaction location between the anode and cathode planes (~26 to ~127.5 ns full width at half maximum (FWHM) for 0.5 mm and 4.2 mm depths, respectively). 5 mm width cathode strips by contrast exhibited more stable time resolution for the same interaction locations (~34 to ~83 ns FWHM), provided more linear spatial positioning in the direction orthogonal to the electrode planes, and as much as 68.4% improvement in photon sensitivity over the 3 mm wide cathode strips. The results were understood by analyzing the cathode strips' weighting functions, which indicated a stronger 'small pixel' effect in the 3 mm wide cathode strips. Photon sensitivity and anode energy resolution were seen to improve with decreasing steering electrode bias from 0 to -80 V w.r.t. the anode potential. A slight improvement in energy resolution was seen for wider steering electrode strips (400 versus 100 µm) for charge-shared photon interactions. Although this study successfully focused on electrode pattern features for PET performance, the results are generally applicable to semiconductor photon detectors employing cross-trip electrode patterns.


Subject(s)
Cadmium , Positron-Emission Tomography/instrumentation , Tellurium , Zinc , Animals , Electrodes , Equipment Design , Linear Models , Photons , Time Factors
6.
Phys Med Biol ; 58(20): 7227-38, 2013 Oct 21.
Article in English | MEDLINE | ID: mdl-24061218

ABSTRACT

Combining PET with MRI in a single system provides clinicians with complementary molecular and anatomical information. However, existing integrated PET/MRI systems do not have time-of-flight (ToF) PET capabilities. This work describes an MRI-compatible front-end electronic system with ToF capabilities. The approach employs a fast arrival-time pickoff comparator to digitize the timing information, and a laser diode to drive a 10 m fiber-optic cable to optically transmit asynchronous timing information to a photodiode receiver readout system. The FWHM jitter of the comparator and this electo-optical link is 11.5 ps in response to a fast digital pulse. When configured with LYSO scintillation crystals and Hamamatsu MPPC silicon photo-multipliers the comparator and electro-optical link achieved a 511 keV coincidence time resolution of 254.7 ps +/- 8.0 ps FWHM with 3 × 3 × 20 mm(3) crystals and 166.5 +/- 2.5 ps FWHM with 3 × 3 × 5 mm(3) crystals.


Subject(s)
Electrical Equipment and Supplies , Magnetic Resonance Imaging/instrumentation , Multimodal Imaging/instrumentation , Optical Phenomena , Positron-Emission Tomography/instrumentation , Optical Fibers , Time Factors
7.
Phys Med Biol ; 58(15): 5049-59, 2013 Aug 07.
Article in English | MEDLINE | ID: mdl-23831601

ABSTRACT

The adoption of solid-state photodetectors for positron emission tomography (PET) system design and the interest in 3D interaction information from PET detectors has lead to an increasing number of readout channels in PET systems. To handle these additional readout channels, PET readout electronics should be simplified to reduce the power consumption, cost, and size of the electronics for a single channel. Pulse-width modulation (PWM), where detector pulses are converted to digital pulses with width proportional to the detected photon energy, promises to simplify PET readout by converting the signals to digital form at the beginning of the processing chain, and allowing a single time-to-digital converter to perform the data acquisition for many channels rather than routing many analogue channels and digitizing in the back end. Integrator based PWM systems, also known as charge-to-time converters (QTCs), are especially compact, reducing the front-end electronics to an op-amp integrator with a resistor discharge, and a comparator. QTCs, however, have a long dead-time during which dark count noise is integrated, reducing the output signal-to-noise ratio. This work presents a QTC based PWM circuit with a gated integrator that shows performance improvements over existing QTC based PWM. By opening and closing an analogue switch on the input of the integrator, the circuit can be controlled to integrate only the portions of the signal with a high signal-to-noise ratio. It also allows for multiplexing different detectors into the same PWM circuit while avoiding uncorrelated noise propagation between photodetector channels. Four gated integrator PWM circuits were built to readout the spatial channels of two position sensitive solid-state photomultiplier (PS-SSPM). Results show a 4 × 4 array 0.9 mm × 0.9 mm × 15 mm of LYSO crystals being identified on the 5 mm × 5 mm PS-SSPM at room temperature with no degradation for twofold multiplexing. In principle, much larger multiplexing ratios are possible, limited only by count rate issues.


Subject(s)
Positron-Emission Tomography/instrumentation , Scintillation Counting/instrumentation , Silicon
8.
Phys Med Biol ; 56(6): 1563-84, 2011 Mar 21.
Article in English | MEDLINE | ID: mdl-21335649

ABSTRACT

This paper investigates the performance of 1 mm resolution cadmium zinc telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm × 40 mm × 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and energy resolution. The study found a single anode FWHM energy resolution of 3.06 ± 0.39% at 511 keV throughout most of the detector volume. Improved resolution is expected with properly shielded front-end electronics. Measurements made using a collimated beam established the efficacy of the steering electrodes in facilitating enhanced charge collection across anodes, as well as a spatial resolution of 0.44 ± 0.07 mm in the direction orthogonal to the electrode planes. Finally, measurements based on coincidence electronic collimation yielded a point spread function with 0.78 ± 0.10 mm FWHM, demonstrating 1 mm spatial resolution capability transverse to the anodes-as expected from the 1 mm anode pitch. These findings indicate that the CZT-based detector concept has excellent performance and shows great promise for a high-resolution PET system.


Subject(s)
Cadmium , Electronics/instrumentation , Imaging, Three-Dimensional/instrumentation , Positron-Emission Tomography/instrumentation , Tellurium , Zinc , Electrodes , Electronics/methods , Humans , Imaging, Three-Dimensional/methods , Photons , Positron-Emission Tomography/methods
9.
Phys Med Biol ; 56(3): 735-56, 2011 Feb 07.
Article in English | MEDLINE | ID: mdl-21239845

ABSTRACT

This study investigates the physical limitations involved in the extraction of accurate timing information from pixellated scintillation detectors for positron emission tomography (PET). Accurate physical modeling of the scintillation detection process, from scintillation light generation through detection, is devised and performed for varying detector attributes, such as the crystal element length, light yield, decay time and surface treatment. The dependence of light output and time resolution on these attributes, as well as on the photon interaction depth (DoI) of the annihilation quanta within the crystal volume, is studied and compared with experimental results. A theoretical background which highlights the importance of different time blurring factors for instantaneous ('ideal') and exponential ('realistic') scintillation decay is developed and compared with simulated data. For the case of a realistic scintillator, our experimental and simulation findings suggest that dependence of detector performance on DoI is more evident for crystal elements with rough ('as cut') compared to polished surfaces (maximum observed difference of 64% (25%) and 22% (19%) in simulation (measurement) for light output and time resolution, respectively). Furthermore we observe distinct trends of the detector performance dependence on detector element length and surface treatment. For short crystals (3 × 3 × 5 mm(3)) an improvement in light output and time resolution for 'as cut' compared to polished crystals is observed (3% (7%) and 9% (9%) for simulation (measurement), respectively). The trend is reversed for longer crystals (3 × 3 × 20 mm(3)) and an improvement in light output and time uncertainty for polished compared to 'as cut' crystals is observed (36% (6%) and 40% (20%) for simulation (measurement), respectively). The results of this study are used to guide the design of PET detectors with combined time of flight (ToF) and DoI features.


Subject(s)
Models, Theoretical , Scintillation Counting/methods , Monte Carlo Method , Photons , Positron-Emission Tomography , Time Factors
10.
Med Phys ; 37(11): 5838-49, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21158296

ABSTRACT

PURPOSE: This study aims to address design considerations of a high resolution, high sensitivity positron emission tomography scanner dedicated to breast imaging. METHODS: The methodology uses a detailed Monte Carlo model of the system structures to obtain a quantitative evaluation of several performance parameters. Special focus was given to the effect of dense mechanical structures designed to provide mechanical robustness and thermal regulation to the minuscule and temperature sensitive detectors. RESULTS: For the energies of interest around the photopeak (450-700 keV energy window), the simulation results predict a 6.5% reduction in the single photon detection efficiency and a 12.5% reduction in the coincidence photon detection efficiency in the case that the mechanical structures are interspersed between the detectors. However for lower energies, a substantial increase in the number of detected events (approximately 14% and 7% for singles at a 100-200 keV energy window and coincidences at a lower energy threshold of 100 keV, respectively) was observed with the presence of these structures due to backscatter. The number of photon events that involve multiple interactions in various crystal elements is also affected by the presence of the structures. For photon events involving multiple interactions among various crystal elements, the coincidence photon sensitivity is reduced by as much as 20% for a point source at the center of the field of view. There is no observable effect on the intrinsic and the reconstructed spatial resolution and spatial resolution uniformity. CONCLUSIONS: Mechanical structures can have a considerable effect on system sensitivity, especially for systems processing multi-interaction photon events. This effect, however, does not impact the spatial resolution. Various mechanical structure designs are currently under evaluation in order to achieve optimum trade-off between temperature stability, accurate detector positioning, and minimum influence on system performance.


Subject(s)
Breast Neoplasms/pathology , Breast/pathology , Positron-Emission Tomography/methods , Diagnostic Imaging/methods , Equipment Design , Humans , Monte Carlo Method , Photons , Reproducibility of Results , Scattering, Radiation , Temperature , Time Factors
11.
Phys Med Biol ; 55(19): 5895-911, 2010 Oct 07.
Article in English | MEDLINE | ID: mdl-20844332

ABSTRACT

Performance of a new high resolution PET detection concept is presented. In this new concept, annihilation radiation enters the scintillator detectors edge-on. Each detector module comprises two 8 × 8 LYSO scintillator arrays of 0.91 × 0.91 × 1 mm(3) crystals coupled to two position-sensitive avalanche photodiodes (PSAPDs) mounted on a flex circuit. Appropriate crystal segmentation allows the recording of all three spatial coordinates of the interaction(s) simultaneously with submillimeter resolution. We report an average energy resolution of 14.6 ± 1.7% for 511 keV photons at FWHM. Coincident time resolution was determined to be 2.98 ± 0.13 ns FWHM on average. The coincidence point spread function (PSF) has an average FWHM of 0.837 ± 0.049 mm (using a 500 µm spherical source) and is uniform across the arrays. Both PSF and coincident time resolution degrade when Compton interactions are included in the data. Different blurring factors were evaluated theoretically, resulting in a calculated PSF of 0.793 mm, in good agreement with the measured value.


Subject(s)
Positron-Emission Tomography/instrumentation , Scintillation Counting/instrumentation , Equipment Design , Humans , Image Processing, Computer-Assisted , Time Factors
12.
IEEE Trans Med Imaging ; 27(1): 58-63, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18270062

ABSTRACT

We present a phantom study to evaluate the performance of the eXplore Optix (Advanced Research Technologies-GE Healthcare), the first commercially available time-domain tomography system for small animal fluorescence imaging, and compare its capabilities with the widely used IVIS 200 (Xenogen Corporation-Caliper) continuous wave planar imaging system. The eXplore Optix, based on point-wise illumination and collection scheme, is found to be a log order more sensitive with significantly higher detection depth and spatial resolution as compared with the wide-area illumination IVIS 200 under the conditions tested. A time-resolved detection system allows the eXplore Optix to measure the arrival time distribution of fluorescence photons. This enables fluorescence lifetime measurement, absorption mapping, and estimation of fluorescent inclusion depth, which in turn is used by a reconstruction algorithm to calculate the volumetric distribution of the fluorophore concentration. An increased acquisition time and lack of ability to image multiple animals simultaneously are the main drawbacks of the eXplore Optix as compared with the IVIS 200.


Subject(s)
Image Enhancement/instrumentation , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Microscopy, Fluorescence/instrumentation , Microscopy, Fluorescence/veterinary , Tomography, Optical/instrumentation , Tomography, Optical/veterinary , Animals , Equipment Design , Equipment Failure Analysis , Image Enhancement/methods , Microscopy, Fluorescence/methods , Reproducibility of Results , Sensitivity and Specificity , Tomography, Optical/methods
13.
Phys Med Biol ; 52(13): 3753-72, 2007 Jul 07.
Article in English | MEDLINE | ID: mdl-17664575

ABSTRACT

We are studying two new detector technologies that directly measure the three-dimensional coordinates of 511 keV photon interactions for high-resolution positron emission tomography (PET) systems designed for small animal and breast imaging. These detectors are based on (1) lutetium oxyorthosilicate (LSO) scintillation crystal arrays coupled to position-sensitive avalanche photodiodes (PSAPD) and (2) cadmium zinc telluride (CZT). The detectors have excellent measured 511 keV photon energy resolutions (8% photon sensitivity for the LSO-PSAPD box configuration and >15% for CZT box geometry, using a 350-650 keV energy window setting. These simulation results compare well with analytical estimations. The trend is different for a clinical whole-body PET system that uses conventional LSO-PMT block detectors with larger crystal elements. Simulations predict roughly the same sensitivity for both box and cylindrical detector configurations. This results from the fact that a large system diameter (>80 cm) results in relatively small inter-module gaps in clinical whole-body PET. In addition, the relatively large block detectors (typically >5 x 5 cm(2) cross-sectional area) and large crystals (>4 x 4 x 20 mm(3)) enable a higher fraction of detector scatter photons to be absorbed compared to a small animal system. However, if the four detector sides (panels) of a box-shaped system geometry are configured to move with respect to each other, to better fit the transaxial FOV to the actual size of the object to be imaged, a significant increase in photon sensitivity is possible. Simulation results predict a 60-100% relative increase of photon sensitivity for the proposed small animal PET box configurations and >60% increase for a clinical whole-body system geometry. Thus, simulation results indicate that for a PET system built from rectangular-shaped detector modules, arranging them into a box-shaped system geometry may help us to significantly boost photon sensitivity for both small animal and clinical PET systems.


Subject(s)
Photons , Positron-Emission Tomography/instrumentation , Positron-Emission Tomography/methods , Animals , Cadmium Compounds/chemistry , Computer Simulation , Crystallization , Equipment Design , Image Processing, Computer-Assisted , Lutetium/chemistry , Monte Carlo Method , Sensitivity and Specificity , Silicates/chemistry , Tellurium/chemistry , Transducers , Zinc/chemistry
14.
Phys Med Biol ; 44(3): 781-99, 1999 Mar.
Article in English | MEDLINE | ID: mdl-10211810

ABSTRACT

Developments in positron emission tomography (PET) technology have resulted in systems with finer detector elements designed to further improve spatial resolution. However, there is a limit to what extent reducing detector element size will improve spatial resolution in PET. The spatial resolution of PET imaging is limited by several other factors, such as annihilation photon non-collinearity, positron range, off-axis detector penetration, detector Compton scatter, undersampling of the signal in the linear or angular directions for the image reconstruction process, and patient motion. The overall spatial resolution of the systems is a convolution of these components. Of these other factors that contribute to resolution broadening, perhaps the most uncertain, poorly understood, and, for certain isotopes, the most dominant effect is from positron range. To study this latter effect we have developed a Monte Carlo simulation code that models positron trajectories and calculates the distribution of the end point coordinates in water for the most common PET isotopes used: 18F, 13N, 11C and 15O. In this work we present some results from these positron trajectory studies and calculate what effect positron range has on the overall PET system spatial resolution, and how this influences the choice of PET system design parameters such as detector element size and system diameter. We found that the fundamental PET system spatial resolution limit set from detector size, photon non-collinearity and positron range alone varied from nearly 1 mm FWHM (2 mm FWTM) for a 10-20 cm diameter system typical for animal studies with 18F to roughly 4 mm FWHM (7 mm FWTM) for an 80 cm diameter system typical for human imaging using 15O.


Subject(s)
Tomography, Emission-Computed/methods , Animals , Carbon Radioisotopes , Computer Simulation , Electrons , Fluorine Radioisotopes , Humans , Image Processing, Computer-Assisted , Monte Carlo Method , Nitrogen Radioisotopes , Oxygen Radioisotopes , Photons , Plastics , Scattering, Radiation , Thallium Radioisotopes , Tomography, Emission-Computed/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...