Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 145(41): 22845-22854, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37815193

ABSTRACT

Valuable substituted phenols are accessible via the selective decarboxylation of hydroxybenzoic acid derivatives using multifunctional catalysts composed of bimetallic iron-ruthenium nanoparticles immobilized on an amine-functionalized supported ionic liquid phase (Fe25Ru75@SILP+IL-NEt2). The individual components of the catalytic system are assembled using a molecular approach to bring metal and amine sites into close contact on the support material, providing high stability and high decarboxylation activity. Operating under a hydrogen atmosphere was found to be essential to achieve high selectivity and yields. As the catalyst materials enable also the selective hydrogenation and hydrodeoxygenation of various additional functional groups (i.e., formyl, acyl, and nitro substituents), direct access to the corresponding phenols can be achieved via integrated tandem reactions. The approach opens versatile synthetic pathways for the production of valuable phenols from a wide range of readily available substrates, including compounds derived from lignocellulosic biomass.

2.
ChemElectroChem ; 9(3): e202101271, 2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35874044

ABSTRACT

In this study, we combine in situ spectroelectrochemistry coupled with electron paramagnetic resonance (EPR) and X-ray absorption spectroscopies (XAS) to investigate a molecular Ru-based water oxidation catalyst bearing a polypyridinic backbone [RuII(OH2)(Py2Metacn)]2+ . Although high valent key intermediate species arising in catalytic cycles of this family of compounds have remain elusive due to the lack of additional anionic ligands that could potentially stabilize them, mechanistic studies performed on this system proposed a water nucleophilic attack (WNA) mechanism for the O-O bond formation. Employing in situ experimental conditions and complementary spectroscopic techniques allowed to observe intermediates that provide support for a WNA mechanism, including for the first time a Ru(V) oxo intermediate based on the Py2Metacn ligand, in agreement with the previously proposed mechanism.

3.
Angew Chem Int Ed Engl ; 60(51): 26639-26646, 2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34617376

ABSTRACT

Copper chromite is decorated with iron carbide nanoparticles, producing a magnetically activatable multifunctional catalytic system. This system (ICNPs@Cu2 Cr2 O5 ) can reduce aromatic ketones to aromatic alcohols when exposed to magnetic induction. Under magnetic excitation, the ICNPs generate locally confined hot spots, selectively activating the Cu2 Cr2 O5 surface while the global temperature remains low (≈80 °C). The catalyst selectively hydrogenates a scope of benzylic and non-benzylic ketones under mild conditions (3 bar H2 , heptane), while ICNPs@Cu2 Cr2 O5 or Cu2 Cr2 O5 are inactive when the same global temperature is adjusted by conventional heating. A flow reactor is presented that allows the use of magnetic induction for continuous-flow hydrogenation at elevated pressure. The excellent catalytic properties of ICNPs@Cu2 Cr2 O5 for the hydrogenation of biomass-derived furfuralacetone are conserved for at least 17 h on stream, demonstrating for the first time the application of a magnetically heated catalyst to a continuously operated hydrogenation reaction in the liquid phase.

4.
Small ; 17(5): e2006683, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33346403

ABSTRACT

The synthesis, characterization, and catalytic properties of bimetallic cobalt-rhodium nanoparticles of defined Co:Rh ratios immobilized in an imidazolium-based supported ionic liquid phase (Cox Rh100- x @SILP) are described. Following an organometallic approach, precise control of the Co:Rh ratios is accomplished. Electron microscopy and X-ray absorption spectroscopy confirm the formation of small, well-dispersed, and homogeneously alloyed zero-valent bimetallic nanoparticles in all investigated materials. Benzylideneacetone and various bicyclic heteroaromatics are used as chemical probes to investigate the hydrogenation performances of the Cox Rh100- x @SILP materials. The Co:Rh ratio of the nanoparticles is found to have a critical influence on observed activity and selectivity, with clear synergistic effects arising from the combination of the noble metal and its 3d congener. In particular, the ability of Cox Rh100- x @SILP catalysts to hydrogenate 6-membered aromatic rings is found to experience a remarkable sharp switch in a narrow composition range between Co25 Rh75 (full ring hydrogenation) and Co30 Rh70 (no ring hydrogenation).

5.
Inorg Chem ; 59(17): 12075-12085, 2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32805985

ABSTRACT

The carbon monoxide (CO)-photoreleasing molecule [Ru(Me3[9]aneN3)(bpy)(CO)]2+ (RuCO2+; bpy = 2,2'-bipyridine) was prepared and structurally characterized. The photochemical behavior was studied in unprecedented detail for this type of system, using a combination of steady-state and ultrafast transient absorption experiments, which unveiled that 3MLCT and 3dd excited states participate in the decay cascade of photoexcited RuCO2+. Theoretical calculations yield a consistent picture, providing details of the electronic structure of the transient species involved. Our results suggest that the photorelease of CO involves excited states of different electronic nature that are populated sequentially and in parallel. This complex scenario strengthens the idea that the rational design of a good photoCORM is a difficult task to carry out solely using the tools provided by chemical intuition: it is necessary to control by design factors that favor the population of specific photoactive electronic states with respect to those that are not.

6.
Inorg Chem ; 59(12): 8272-8283, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32390417

ABSTRACT

Ruthenium 4d-to-2p X-ray emission spectroscopy (XES) was systematically explored for a series of Ru2+ and Ru3+ species. Complementary density functional theory calculations were utilized to allow for a detailed assignment of the experimental spectra. The studied complexes have a range of different coordination spheres, which allows the influence of the ligand donor/acceptor properties on the spectra to be assessed. Similarly, the contributions of the site symmetry and the oxidation state of the metal were analyzed. Because the 4d-to-2p emission lines are dipole-allowed, the spectral features are intense. Furthermore, in contrast with K- or L-edge X-ray absorption of 4d transition metals, which probe the unoccupied levels, the observed 4p-to-2p XES arises from electrons in filled-ligand- and filled-metal-based orbitals, thus providing simultaneous access to the ligand and metal contributions to bonding. As such, 4d-to-2p XES should be a promising tool for the study of a wide range of 4d transition-metal compounds.

7.
Inorg Chem ; 58(19): 12542-12546, 2019 Oct 07.
Article in English | MEDLINE | ID: mdl-30925048

ABSTRACT

Axial coordination in nickel(II) porphyrins has been thoroughly investigated and is well understood. However, isolated five-coordinate nickel(II) porphyrins are still elusive after 50 years of intense research, even though they play a crucial role as intermediates in enzymes and catalysts. Herein we present the first fully stable, thoroughly characterized five-coordinate nickel(II) porphyrin in solution and in the solid state (crystal structure). The spectroscopic properties indicate pure high-spin behavior (S = 1). There are distinct differences in the NMR, UV-vis, and redox behavior compared to those of high-spin six-coordinate [with two axial ligands, such as NiTPPF10·(py)2] and low-spin four-coordinate (NiTPPF10) nickel(II) porphyrins. The title compound, a strapped nickel(II) porphyrin, allows a direct comparison of four-, five-, and six-coordinate nickel(II) porphyrins, depending on the environment. With this reference in hand, previous results were reevaluated, for example, the switching efficiencies and thermodynamic data of nickel(II) porphyrin-based spin switches in solution.

8.
Inorg Chem ; 57(19): 12270-12281, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30222334

ABSTRACT

This work demonstrates that the acidity of nitroxyl (HNO) coordinated to a metal core is significantly influenced by its coordination environment. The possibility that NO- complexes may be the predominant species in physiological environments has implications in bioinorganic chemistry and biochemistry. This (apparently simple) result pushed us to delve into the basic aspects of HNO coordination chemistry. A series of three closely related {RuNO}6,7 complexes have been prepared and structurally characterized, namely [Ru(Me3[9]aneN3)(L2)(NO)]3+/2+, with L2 = 2,2'-bipyridine, 4,4'-dimethoxy-2,2'-bipyridine, and 2,2'-bipyrimidine. These species have also been thoroughly studied in solution, allowing for a systematic exploration of their electrochemical properties in a wide pH range, thus granting access and characterization of the elusive {RuNO}8 systems. Modulation of the electronic density in the {RuNO} fragment introduced by changing the bidentate coligand L2 produced only subtle structural modifications but affected dramatically other properties, most noticeably the redox potentials of the {RuNO}6,7 couples and the acidity of bound HNO, which spans over a range of almost three pH units. Controlling the acidity of coordinated HNO by the rational design of coordination compounds is of fundamental relevancy in the field of inorganic chemistry and also fuels the growing interest of the community in understanding the role that different HNO-derived species can play in biological systems.


Subject(s)
Coordination Complexes/chemistry , Nitrogen Oxides/chemistry , Ruthenium/chemistry , Acids/chemistry , Chemistry, Bioinorganic , Crystallography, X-Ray , Hydrogen-Ion Concentration , Models, Molecular , Oxidation-Reduction
9.
Inorg Chem ; 57(15): 9515-9530, 2018 Aug 06.
Article in English | MEDLINE | ID: mdl-30044087

ABSTRACT

Understanding the detailed electronic structure of transition metal ions is essential in numerous areas of inorganic chemistry. In particular, the ability to map out the many particle d-d spectrum of a transition metal catalyst is key to understanding and predicting reactivity. However, from a practical perspective, there are often experimental limitations on the ability to determine the energetic ordering, and multiplicity of all the excited states. These limitations derive in part from parity and spin-selection rules, as well as from the limited energy range of many standard laboratory instruments. Herein, we demonstrate the ability of 2p3d resonant inelastic X-ray scattering (RIXS) to obtain detailed insights into the many particle spectrum of simple inorganic molecular iron complexes. The present study focuses on low-spin ferrous and ferric iron complexes, including [FeIII/II(tacn)2]3+/2+ and [FeIII/II(CN)6]3-/4-. This series thus allows us to assess the contribution of d-count and ligand donor type, by comparing the purely σ-donating tacn ligand to the π-accepting cyanide. In order to highlight the conceptual difference between RIXS and traditional optical spectroscopy, we compare first RIXS results with UV-vis and magnetic circular dichroism spectroscopy. We then highlight the ability of 2p3d RIXS to (1) separate d-d transitions from charge transfer transitions and (2) to determine the many particle d-d spectrum over a much wider energy range than is possible by optical spectroscopy. Our experimental results are correlated with semiempirical multiplet simulations and ab initio complete active space self-consistent field calculations in order to obtain detailed assignments of the excited states. These results show that Δ S = 1, and possibly Δ S = 2, transitions may be observed in 2p3d RIXS spectra. Hence, this methodology has great promise for future applications in all areas of transition metal inorganic chemistry.

10.
Dalton Trans ; 46(46): 16058-16064, 2017 Nov 28.
Article in English | MEDLINE | ID: mdl-29119166

ABSTRACT

Photodelivery of NO requires stable compounds which can be made reactive by irradiation with (visible) light. Traditional {MNO}6 complexes require a substantial ligand design to shift their absorption spectra to the appropriate region of the electromagnetic spectrum. [Fe((CH2Py2)2Me[9]aneN3)(NO)](BF4)2 is a new {FeNO}7 octahedral coordination compound, which is thermally and air-stable in solution. Illumination with a 450 nm light source induces significant photodetachment of the coordinated NO (ϕNO = 0.52 mol einstein-1), suggesting that {FeNO}7 compounds can be in fact suitable compounds for therapeutic NO-photorelease.

11.
Phys Chem Chem Phys ; 19(32): 21373-21381, 2017 Aug 16.
Article in English | MEDLINE | ID: mdl-28766607

ABSTRACT

A chemometric procedure to deal with spectroscopically monitored processes involving photochemical steps is fully described. The methodology makes it possible to work with reactions that involve several components with unknown (and eventually overlapping) spectra and provides a tool for the simultaneous determination of both the quantum yields of the reaction and the spectra of all the species present in a multi-step photochemical process. As a benchmark, we apply these ideas to extract the quantum yields of photodetachment of coordinated ligands employing data recorded over the course of the decomposition of [Ru(tpm)(bpy)(CH3CN)]2+ and cis-[Ru(bpy)2(CH3CN)2]2+ under stationary photolysis conditions. The approach is fast and robust and it is easily implemented in scientific programming languages.

12.
Inorg Chem ; 55(16): 7808-10, 2016 Aug 15.
Article in English | MEDLINE | ID: mdl-27454920

ABSTRACT

[Ru(Me3[9]aneN3)(bpy)(NO)](BF4)2 ([1](BF4)2) was explored by single-crystal X-ray diffractometry, leading to the first crystal structure of an octahedral {RuNO}(7) complex. The metal resides on the center of a distorted octahedron, with dN-O and ∠Ru-N-O at 1.177(3) Å and 141.6(2)°, respectively. [1](BF4)2 can be stored indefinitely under argon. Solutions of [1](2+) show no signs of decomposition when protected from air and light. The electron paramagnetic resonance X-band spectrum at 85 K in vitrified acetonitrile (MeCN) shows signals consistent with an S = (1)/2 spin state, better described as Ru(II)NO(•) (g = [2.030, 1.993, 1.880] and A = [11.0, 30.4, 3.9]/10(-4) cm(-1)). In water, the {RuNO}(7) species reacts with O2 in a 1:4 stoichiometry. The reaction is first-order in both reactants with k = (1.9 ± 0.2) M(-1) s(-1) at 25 °C (ΔH(⧧) = 11.5 ± 0.3 kJ mol(-1); ΔS(⧧) = -189 ± 1 J K(-1) mol(-1)). Solutions of [1](2+) evolve NO when irradiated a 365 nm with ϕNO = 0.024 and 0.090 mol einstein(-1) in H2O and MeCN, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...