Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-37873443

ABSTRACT

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has led to significant global morbidity and mortality. A crucial viral protein, the non-structural protein 14 (nsp14), catalyzes the methylation of viral RNA and plays a critical role in viral genome replication and transcription. Due to the low mutation rate in the nsp region among various SARS-CoV-2 variants, nsp14 has emerged as a promising therapeutic target. However, discovering potential inhibitors remains a challenge. In this work, we introduce a computational pipeline for the rapid and efficient identification of potential nsp14 inhibitors by leveraging virtual screening and the NCI open compound collection, which contains 250,000 freely available molecules for researchers worldwide. The introduced pipeline provides a cost-effective and efficient approach for early-stage drug discovery by allowing researchers to evaluate promising molecules without incurring synthesis expenses. Our pipeline successfully identified seven promising candidates after experimentally validating only 40 compounds. Notably, we discovered NSC620333, a compound that exhibits a strong binding affinity to nsp14 with a dissociation constant of 427 ± 84 nM. In addition, we gained new insights into the structure and function of this protein through molecular dynamics simulations. We identified new conformational states of the protein and determined that residues Phe367, Tyr368, and Gln354 within the binding pocket serve as stabilizing residues for novel ligand interactions. We also found that metal coordination complexes are crucial for the overall function of the binding pocket. Lastly, we present the solved crystal structure of the nsp14-MTase complexed with SS148 (PDB:8BWU), a potent inhibitor of methyltransferase activity at the nanomolar level (IC50 value of 70 ± 6 nM). Our computational pipeline accurately predicted the binding pose of SS148, demonstrating its effectiveness and potential in accelerating drug discovery efforts against SARS-CoV-2 and other emerging viruses.

2.
bioRxiv ; 2023 May 22.
Article in English | MEDLINE | ID: mdl-37292735

ABSTRACT

Ammonia is a ubiquitous, toxic by-product of cell metabolism. Its high membrane permeability and proton affinity causes ammonia to accumulate inside acidic lysosomes in its poorly membrane-permeant form: ammonium (NH 4 + ). Ammonium buildup compromises lysosomal function, suggesting the existence of mechanisms that protect cells from ammonium toxicity. Here, we identified SLC12A9 as a lysosomal ammonium exporter that preserves lysosomal homeostasis. SLC12A9 knockout cells showed grossly enlarged lysosomes and elevated ammonium content. These phenotypes were reversed upon removal of the metabolic source of ammonium or dissipation of the lysosomal pH gradient. Lysosomal chloride increased in SLC12A9 knockout cells and chloride binding by SLC12A9 was required for ammonium transport. Our data indicate that SLC12A9 is a chloride-driven ammonium co-transporter that is central in an unappreciated, fundamental mechanism of lysosomal physiology that may have special relevance in tissues with elevated ammonia, such as tumors.

3.
Sci Adv ; 9(16): eadf8966, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37075117

ABSTRACT

Lysosomes degrade macromolecules and recycle their nutrient content to support cell function and survival. However, the machineries involved in lysosomal recycling of many nutrients remain to be discovered, with a notable example being choline, an essential metabolite liberated via lipid degradation. Here, we engineered metabolic dependency on lysosome-derived choline in pancreatic cancer cells to perform an endolysosome-focused CRISPR-Cas9 screen for genes mediating lysosomal choline recycling. We identified the orphan lysosomal transmembrane protein SPNS1 as critical for cell survival under choline limitation. SPNS1 loss leads to intralysosomal accumulation of lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE). Mechanistically, we reveal that SPNS1 is a proton gradient-dependent transporter of LPC species from the lysosome for their re-esterification into phosphatidylcholine in the cytosol. Last, we establish that LPC efflux by SPNS1 is required for cell survival under choline limitation. Collectively, our work defines a lysosomal phospholipid salvage pathway that is essential under nutrient limitation and, more broadly, provides a robust platform to deorphan lysosomal gene function.


Subject(s)
Choline , Phospholipids , Choline/metabolism , Cell Survival , Phospholipids/metabolism , Phosphatidylcholines/metabolism , Lysosomes/metabolism
4.
Curr Biol ; 33(4): 607-621.e7, 2023 02 27.
Article in English | MEDLINE | ID: mdl-36652947

ABSTRACT

Phagocytic clearance is important to provide cells with metabolites and regulate immune responses, but little is known about how phagolysosomes finally resolve their phagocytic cargo of cell corpses, cell debris, and pathogens. While studying the phagocytic clearance of non-apoptotic polar bodies in C. elegans, we previously discovered that phagolysosomes tubulate into small vesicles to facilitate corpse clearance within 1.5 h. Here, we show that phagolysosome vesiculation depends on amino acid export by the solute transporter SLC-36.1 and the activation of TORC1. We demonstrate that downstream of TORC1, BLOC-1-related complex (BORC) is de-repressed by Ragulator through the BORC subunit BLOS-7. In addition, the BORC subunit SAM-4 is needed continuously to recruit the small GTPase ARL-8 to the phagolysosome for tubulation. We find that disrupting the regulated GTP-GDP cycle of ARL-8 reduces tubulation by kinesin-1, delays corpse clearance, and mislocalizes ARL-8 away from lysosomes. We also demonstrate that mammalian phagocytes use BORC to promote phagolysosomal degradation, confirming the conserved importance of TOR and BORC. Finally, we show that HOPS is required after tubulation for the rapid degradation of cargo in small phagolysosomal vesicles, suggesting that additional rounds of lysosome fusion occur. Thus, by observing single phagolysosomes over time, we identified the molecular pathway regulating phagolysosome vesiculation that promotes efficient resolution of phagocytosed cargos.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Apoptosis , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Lysosomes/metabolism , Mammals , Mechanistic Target of Rapamycin Complex 1/metabolism , Phagocytosis , Phagosomes/metabolism , Multiprotein Complexes
5.
FEBS J ; 288(5): 1412-1433, 2021 03.
Article in English | MEDLINE | ID: mdl-32757358

ABSTRACT

Phagocytosis is an essential mechanism for immunity and homeostasis, performed by a subset of cells known as phagocytes. Upon target engulfment, de novo formation of specialized compartments termed phagosomes takes place. Phagosomes then undergo a series of fusion and fission events as they interact with the endolysosomal system and other organelles, in a dynamic process known as phagosome maturation. Because phagocytes play a key role in tissue patrolling and immune surveillance, phagosome maturation is associated with signaling pathways that link phagocytosis to antigen presentation and the development of adaptive immune responses. In addition, and depending on the nature of the cargo, phagosome integrity may be compromised, triggering additional cellular mechanisms including inflammation and autophagy. Upon completion of maturation, phagosomes enter a recently described phase: phagosome resolution, where catabolites from degraded cargo are metabolized, phagosomes are resorbed, and vesicles of phagosomal origin are recycled. Finally, phagocytes return to homeostasis and become ready for a new round of phagocytosis. Altogether, phagosome maturation and resolution encompass a series of dynamic events and organelle crosstalk that can be measured by biochemical, imaging, photoluminescence, cytometric, and immune-based assays that will be described in this guide.


Subject(s)
Endosomes/immunology , Lysosomes/immunology , Phagocytes/immunology , Phagocytosis , Phagosomes/immunology , Adaptive Immunity , Animals , Antigen Presentation , Autophagy/genetics , Autophagy/immunology , Endosomes/metabolism , Endosomes/ultrastructure , Humans , Immunity, Innate , Immunoassay , Immunologic Surveillance , Inflammation , Lysosomes/metabolism , Lysosomes/ultrastructure , Molecular Probe Techniques , Phagocytes/metabolism , Phagocytes/ultrastructure , Phagosomes/metabolism , Phagosomes/ultrastructure , Signal Transduction
6.
Proc Natl Acad Sci U S A ; 117(45): 28251-28262, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33109721

ABSTRACT

Toll-like receptor (TLR) recruitment to phagosomes in dendritic cells (DCs) and downstream TLR signaling are essential to initiate antimicrobial immune responses. However, the mechanisms underlying TLR localization to phagosomes are poorly characterized. We show herein that phosphatidylinositol-4-kinase IIα (PI4KIIα) plays a key role in initiating phagosomal TLR4 responses in murine DCs by generating a phosphatidylinositol-4-phosphate (PtdIns4P) platform conducive to the binding of the TLR sorting adaptor Toll-IL1 receptor (TIR) domain-containing adaptor protein (TIRAP). PI4KIIα is recruited to maturing lipopolysaccharide (LPS)-containing phagosomes in an adaptor protein-3 (AP-3)-dependent manner, and both PI4KIIα and PtdIns4P are detected on phagosomal membrane tubules. Knockdown of PI4KIIα-but not the related PI4KIIß-impairs TIRAP and TLR4 localization to phagosomes, reduces proinflammatory cytokine secretion, abolishes phagosomal tubule formation, and impairs major histocompatibility complex II (MHC-II) presentation. Phagosomal TLR responses in PI4KIIα-deficient DCs are restored by reexpression of wild-type PI4KIIα, but not of variants lacking kinase activity or AP-3 binding. Our data indicate that PI4KIIα is an essential regulator of phagosomal TLR signaling in DCs by ensuring optimal TIRAP recruitment to phagosomes.


Subject(s)
1-Phosphatidylinositol 4-Kinase/metabolism , Dendritic Cells/immunology , Major Histocompatibility Complex/physiology , Phagosomes/metabolism , Toll-Like Receptor 4/metabolism , Animals , Bone Marrow Cells , Cytokines/metabolism , Lipopolysaccharides , Mice , Signal Transduction , Toll-Like Receptor 4/genetics , Toll-Like Receptors/metabolism
7.
Traffic ; 21(1): 172-180, 2020 01.
Article in English | MEDLINE | ID: mdl-31650670

ABSTRACT

The role of the endoplasmic reticulum (ER) in phagocytosis has been the subject of debate for over a decade. Proteomic determinations and dynamic microscopy of live cells led to conflicting conclusions. Recent insights into the existence of a variety of membrane contact sites (MCS) may help reconcile the seemingly disparate views. Specifically, earlier results can be rationalized considering that the ER forms specialized MCS with nascent and maturing phagosomes, without undergoing fusion. The composition and function of documented ER-to-phagosome contact sites is described. In addition, we speculate about the possible existence of additional phagosomal contact sites, based on available knowledge of interactions between the ER and other endocytic compartments. The interaction between phagosomes and the ER has been the subject of debate. Earlier observations that led to the suggestion that the ER fuses with the phagosomal membrane can now be explained in the light of recent evidence that intimate contacts form between the two organelles.


Subject(s)
Endoplasmic Reticulum , Proteomics , Intracellular Membranes , Phagocytosis , Phagosomes
8.
Nat Cell Biol ; 21(10): 1234-1247, 2019 10.
Article in English | MEDLINE | ID: mdl-31570833

ABSTRACT

Phosphoinositides have a pivotal role in the maturation of nascent phagosomes into microbicidal phagolysosomes. Following degradation of their contents, mature phagolysosomes undergo resolution, a process that remains largely uninvestigated. Here we studied the role of phosphoinositides in phagolysosome resolution. Phosphatidylinositol-4-phosphate (PtdIns(4)P), which is abundant in maturing phagolysosomes, was depleted as they tubulated and resorbed. Depletion was caused, in part, by transfer of phagolysosomal PtdIns(4)P to the endoplasmic reticulum, a process mediated by oxysterol-binding protein-related protein 1L (ORP1L), a RAB7 effector. ORP1L formed discrete tethers between the phagolysosome and the endoplasmic reticulum, resulting in distinct regions with alternating PtdIns(4)P depletion and enrichment. Tubules emerged from PtdIns(4)P-rich regions, where ADP-ribosylation factor-like protein 8B (ARL8B) and SifA- and kinesin-interacting protein/pleckstrin homology domain-containing family M member 2 (SKIP/PLEKHM2) accumulated. SKIP binds preferentially to monophosphorylated phosphoinositides, of which PtdIns(4)P is most abundant in phagolysosomes, contributing to their tubulation. Accordingly, premature hydrolysis of PtdIns(4)P impaired SKIP recruitment and phagosome resolution. Thus, resolution involves phosphoinositides and tethering of phagolysosomes to the endoplasmic reticulum.


Subject(s)
Endoplasmic Reticulum/metabolism , Monocytes/metabolism , Phagosomes/metabolism , Phosphatidylinositol Phosphates/metabolism , Receptors, Steroid/genetics , Signal Transduction , ADP-Ribosylation Factors/genetics , ADP-Ribosylation Factors/metabolism , Animals , CRISPR-Cas Systems , Endoplasmic Reticulum/ultrastructure , Gene Editing , Gene Expression Regulation , Humans , Mice , Monocytes/ultrastructure , Phagocytosis , Phagosomes/ultrastructure , Primary Cell Culture , Proteolysis , RAW 264.7 Cells , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Receptors, Steroid/antagonists & inhibitors , Receptors, Steroid/metabolism , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins
SELECTION OF CITATIONS
SEARCH DETAIL