Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Phylogenet Evol ; 135: 31-44, 2019 06.
Article in English | MEDLINE | ID: mdl-30844445

ABSTRACT

Phylogenetic relationships and phylogeography of six species of Caucasian barbels, the genus Barbus s. str., were studied based on extended geographic coverage and using mtDNA and nDNA markers. Based on 27 species studied, matrilineal phylogeny of the genus Barbus is composed of two clades - (a) West European clade, (b) Central and East European clade. The latter comprises two subclades: (b1) Balkanian subclade, and (b2) Ponto-Caspian one that includes 11 lineages mainly from Black and Caspian Sea drainages. Caucasian barbels are not monophyletic and subdivided for two groups. The Black Sea group encompasses species from tributaries of Black Sea including re-erected B. rionicus and excluding B. kubanicus. The Caspian group includes B. ciscaucasicus, B. cyri (with B. goktschaicus that might be synonymized with B. cyri), B. lacerta from the Tigris-Euphrates basin and B. kubanicus from the Kuban basin. Genetic structure of Black Sea barbels was influenced by glaciation-deglaciation periods accompanying by freshwater phases, periods of migration and colonization of Black Sea tributaries. Intra- and intergeneric hybridization among Caucasian barbines was revealed. In the present study, we report about finding of B. tauricus in the Kuban basin, where only B. kubanicus was thought to inhabit. Hybrids between these species were detected based on both mtDNA and nDNA markers. Remarkably, Kuban population of B. tauricus is distant to closely located conspecific populations and we consider it as relic. We highlight revealing the intergeneric hybridization between evolutionary tetraploid (2n = 100) B. goktschaicus and evolutionary hexaploid (2n = 150) Capoeta sevangi in Lake Sevan.


Subject(s)
Cyprinidae/classification , Cyprinidae/genetics , Hybridization, Genetic , Phylogeny , Phylogeography , Actins/genetics , Animals , Base Sequence , Bayes Theorem , Black Sea , DNA, Mitochondrial/genetics , Genetic Variation , Haplotypes/genetics , Introns/genetics , Time Factors
2.
PLoS One ; 13(3): e0194040, 2018.
Article in English | MEDLINE | ID: mdl-29522555

ABSTRACT

The three-spined stickleback Gasterosteus aculeatus is an important model for studying microevolution and parallel adaptation to freshwater environments. Marine and freshwater forms differ markedly in their phenotype, especially in the number of lateral plates, which are serially repeated elements of the exoskeleton. In fishes, thyroid hormones are involved in adaptation to salinity, as well as the developmental regulation of serially repeated elements. To study how thyroid hormones influence lateral plate development, we manipulated levels of triiodothyronine and thiourea during early ontogeny in a marine and freshwater population with complete and low plate phenotypes, respectively. The development of lateral plates along the body and keel was heterochronic among experimental groups. Fish with a low dosage of exogenous triiodothyronine and those treated with thiourea exhibited retarded development of bony plates compared to both control fish and those treated with higher a triiodothyronine dosage. Several triiodothyronine-treated individuals of the marine form expressed the partial lateral plate phenotype. Some individuals with delayed development of lateral plates manifested 1-2 extra bony plates located above the main row of lateral plates.


Subject(s)
Animal Shells/growth & development , Smegmamorpha/growth & development , Triiodothyronine/pharmacology , Animals , Fresh Water , Phenotype , Seawater , Smegmamorpha/anatomy & histology , Smegmamorpha/embryology , Thiourea/pharmacology , Triiodothyronine/blood
SELECTION OF CITATIONS
SEARCH DETAIL