Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 397
Filter
1.
JAMA Cardiol ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748444

ABSTRACT

Importance: Prior cross-sectional studies have suggested that very high levels of physical activity (PA) are associated with a higher prevalence of coronary artery calcium (CAC). However, less is known regarding the association between high-volume PA and progression of CAC over time. Objective: To explore the association between PA (measured at baseline and during follow-up) and the progression of CAC over time. Design, Setting, and Participants: This cohort study included data from 8771 apparently healthy men and women 40 years and older who had multiple preventive medicine visits at the Cooper Clinic (Dallas, Texas), with a mean (SD) follow-up time of 7.8 (4.7) years between the first and last clinic visit. Participants with reported PA and CAC measurements at each visit during 1998 to 2019 were included in the study. Data were analyzed from March 2023 to February 2024. Exposures: PA reported at baseline and follow-up, examined continuously per 500 metabolic equivalent of task minutes per week (MET-min/wk) and categorically: less than 1500, 1500 to 2999, 3000 or more MET-min/wk. Main Outcomes and Measures: Negative binomial regression was used to estimate the rate of mean CAC progression between visits, with potential modification by PA volume, calculated as the mean of PA at baseline and follow-up. In addition, proportional hazards regression was used to estimate hazard ratios for baseline PA as a predictor of CAC progression to 100 or more Agatston units (AU). Results: Among 8771 participants, the mean (SD) age at baseline was 50.2 (7.3) years for men and 51.1 (7.3) years for women. The rate of mean CAC progression per year from baseline was 28.5% in men and 32.1% in women, independent of mean PA during the same time period. That is, the difference in the rate of CAC progression per year was 0.0% per 500 MET-min/wk for men and women (men: 95% CI, -0.1% to 0.1%; women: 95% CI, -0.4% to 0.5%). Moreover, baseline PA was not associated with CAC progression to a clinically meaningful threshold of 100 AU or more over the follow-up period. The hazard ratio for a baseline PA value of 3000 or more MET-min/wk vs less than 1500 MET-min/wk to cross this threshold was 0.84 (95% CI, 0.66 to 1.08) in men and 1.16 (95% CI, 0.57 to 2.35) in women. Conclusions and Relevance: This study found that PA volume was not associated with progression of CAC in a large cohort of healthy men and women who were initially free of overt cardiovascular disease.

3.
Respir Physiol Neurobiol ; 325: 104256, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38583744

ABSTRACT

We investigated whether central or peripheral limitations to oxygen uptake elicit different respiratory sensations and whether dyspnea on exertion (DOE) provokes unpleasantness and negative emotions in patients with heart failure with preserved ejection fraction (HFpEF). 48 patients were categorized based on their cardiac output (Q̇c)/oxygen uptake (V̇O2) slope and stroke volume (SV) reserve during an incremental cycling test. 15 were classified as centrally limited and 33 were classified as peripherally limited. Ratings of perceived breathlessness (RPB) and unpleasantness (RPU) were assessed (Borg 0-10 scale) during a 20 W cycling test. 15 respiratory sensations statements (1-10 scale) and 5 negative emotions statements (1-10) were subsequently rated. RPB (Central: 3.5±2.0 vs. Peripheral: 3.4±2.0, p=0.86), respiratory sensations, or negative emotions were not different between groups (p>0.05). RPB correlated (p<0.05) with RPU (r=0.925), "anxious" (r=0.610), and "afraid" (r=0.383). While DOE provokes elevated levels of negative emotions, DOE and respiratory sensations seem more related to a common mechanism rather than central and/or peripheral limitations in HFpEF.


Subject(s)
Dyspnea , Heart Failure , Stroke Volume , Humans , Heart Failure/physiopathology , Male , Female , Aged , Dyspnea/physiopathology , Middle Aged , Stroke Volume/physiology , Perception/physiology , Exercise/physiology , Exercise Test , Oxygen Consumption/physiology , Emotions/physiology
4.
Eur J Prev Cardiol ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38651686

ABSTRACT

AIM: While high-volume physical activity (PA) has been linked to elevated coronary artery calcification (CAC), the role of intensity versus duration of PA has not been investigated. The purpose of the study was to examine the role of intensity versus duration of PA in relation to CAC. METHODS: Data are from 23,383 apparently healthy men who completed a PA questionnaire and underwent CAC scanning as part of a preventive exam. Self-reported PA was categorized into 4 groups of average intensity and weekly duration of PA and (average intensity: 1, 3-5.9, 6-8.9, and 9-12 metabolic equivalents of task [METs]; weekly duration: 0, > 0-<2, 2-<5, and ≥5 hours/week). Mean CAC and CAC ≥ 100 Agatston Units (AU) were regressed separately on continuous or categorical average intensity and weekly duration of PA. RESULTS: The mean and standard deviation (SD) age was 51.7 (8.3) years, and mean CAC was 174.8 (543.6) AU with 23.5% of men presenting with CAC ≥ 100 AU. Higher average intensity of PA was related to lower mean CAC (-3.1%/MET, 95% confidence interval [CI]: -4.6, -1.6%/MET) and lower relative risk (RR) of CAC ≥ 100 AU (RR: 0.99, 95% CI: 0.98, 1.00/MET). Opposite trend was observed for the duration component wherein higher weekly duration of PA was significantly associated with greater mean CAC and RR of CAC ≥ 100 AU. CONCLUSIONS: Elevated CAC was associated with lower average intensity and longer duration of PA in men, providing new insight into the complex relationship between leisure-time PA behaviors and risk of CAC.


Does greater extent of coronary artery calcification observed at high volumes of leisure time physical activity relate more to the intensity or the duration of the activity? Higher average intensity of activity is associated with less coronary artery calcification at any age and weekly duration of activity.Higher weekly duration of activity is associated with more coronary artery calcification at any age and average intensity of activity.

5.
J Appl Physiol (1985) ; 136(4): 984-993, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38420680

ABSTRACT

Absolute total hemoglobin mass (tHbmass) and blood compartment volumes are often considered to be higher in endurance athletes compared with nonathletes, yet little data support a fitness effect in older age. Therefore, we measured tHbmass and blood compartment volumes (carbon monoxide rebreathing) in 77 healthy individuals (23% female; aged, 60-87 yr). Participants were recruited into groups based upon their lifelong (>25 yr) exercise "dose": 1) 15 sedentary individuals, <2 sessions/wk; 2) 25 casual exercisers, 2-3 sessions/wk; 3) 24 committed exercisers, 4-5 sessions/wk; and 4) 13 competitive Masters athletes, 6-7 sessions/wk, plus regular competitions. Absolute (L/min) and relative (mL/kg/min) V̇o2peak were higher with increasing exercise "dose" (P = 0.0005 and P < 0.0001, respectively). Hemoglobin concentration, hematocrit, and absolute tHbmass and blood compartment volumes were not significantly different between groups (all, P > 0.1328). When scaled to body mass, tHbmass (Sedentary, 9.2 ± 1.7 mL/kg; Casual, 9.2 ± 1.3; Committed, 10.2 ± 1.4; Competitive, 11.5 ± 1.4, ANOVA P < 0.0001) and blood volume were significantly different between groups [Sedentary, 63.4 (59.2-68.5) mL/kg; Casual, 67.3 (64.4-72.6); Committed, 73.5 (67.5-80.2); Competitive, 83.4 (78.9-88.6), ANOVA P < 0.0001], whereby all values were highest in Masters athletes. However, when scaled to fat-free mass (FFM), tHbmass and blood compartment volumes were greater in Competitive compared with Casual exercisers (all, P < 0.0340) and tHbmass and erythrocyte volume were also higher in Committed compared with Casual exercisers (both, P < 0.0134). In conclusion, absolute tHbmass and blood compartment volumes are not different between groups, with dose-dependent differences only among exercisers when scaled for FFM, with the highest tHbmass and blood compartment volumes in competitive Masters athletes.NEW & NOTEWORTHY We observed that absolute oxygen carrying capacity (total hemoglobin mass, tHbmass) and blood compartment volumes were not associated with lifelong exercise dose. However, hematological adaptations associated with lifelong habitual exercise are only present among exercisers, whereby competitive Masters athletes have a greater oxygen carrying capacity (tHbmass) and expanded blood compartment volumes when scaled to fat-free mass.


Subject(s)
Conservation of Natural Resources , Exercise , Humans , Female , Aged , Male , Blood Volume , Exercise Test , Hemoglobins/analysis , Oxygen Consumption
6.
Hypertension ; 81(4): 917-926, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38385250

ABSTRACT

BACKGROUND: We tested the hypothesis that patients with heart failure with preserved ejection fraction (HFpEF) would have greater muscle sympathetic nerve activity (MSNA) at rest and sympathetic reactivity during a cold pressor test compared with non-heart failure controls. Further, given the importance of the baroreflex modulation of MSNA in the control of blood pressure (BP), we hypothesized that patients with HFpEF would exhibit a reduced sympathetic baroreflex sensitivity. METHODS: Twenty-eight patients with HFpEF and 44 matched controls (mean±SD: 71±8 versus 70±7 years; 9 men/19 women versus 16 men/28 women) were studied. BP, heart rate, and MSNA (microneurography) were measured during 6 to 10 minutes of supine rest and the 2-minute cold pressor test. Spontaneous sympathetic baroreflex sensitivity was assessed during supine rest. RESULTS: Patients with HFpEF had higher resting MSNA burst frequency (39±14 versus 31±12 bursts/min; P=0.020) and lower sympathetic baroreflex sensitivity (-2.83±0.76 versus -3.57±1.19 bursts/100 heartbeats/mm Hg; P=0.019) than controls, but burst incidence was not different between groups (56±19 versus 50±20 bursts/100 heartbeats; P=0.179). During the cold pressor test, increases in MSNA indices did not differ between groups (P=0.135-0.998), but patients had a smaller increase in diastolic BP (Δ4±6 versus Δ14±11 mm Hg; P<0.001) compared with controls. CONCLUSIONS: Despite augmented resting MSNA burst frequency, burst incidence was not significantly different between groups, and sympathetic baroreflex sensitivity was reduced in patients with HFpEF. Furthermore, patients had preserved sympathetic reactivity but attenuated diastolic BP responses during the cold pressor test. These data suggest that, during physiological stress, sympathetic reactivity is intact, but the peripheral pathway for sympathetic vasoconstriction may be impaired in HFpEF.


Subject(s)
Heart Failure , Male , Humans , Female , Heart Failure/diagnosis , Stroke Volume , Baroreflex/physiology , Blood Pressure/physiology , Sympathetic Nervous System , Heart Rate/physiology , Muscle, Skeletal/physiology
7.
J Physiol ; 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38409819

ABSTRACT

Acute hypoxia increases pulmonary arterial (PA) pressures, though its effect on right ventricular (RV) function is controversial. The objective of this study was to characterize exertional RV performance during acute hypoxia. Ten healthy participants (34 ± 10 years, 7 males) completed three visits: visits 1 and 2 included non-invasive normoxic (fraction of inspired oxygen ( F i O 2 ${F_{{\mathrm{i}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ) = 0.21) and isobaric hypoxic ( F i O 2 ${F_{{\mathrm{i}}{{\mathrm{O}}_{\mathrm{2}}}}}$  = 0.12) cardiopulmonary exercise testing (CPET) to determine normoxic/hypoxic maximal oxygen uptake ( V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ ). Visit 3 involved invasive haemodynamic assessments where participants were randomized 1:1 to either Swan-Ganz or conductance catheterization to quantify RV performance via pressure-volume analysis. Arterial oxygen saturation was determined by blood gas analysis from radial arterial catheterization. During visit 3, participants completed invasive submaximal CPET testing at 50% normoxic V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ and again at 50% hypoxic V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ ( F i O 2 ${F_{{\mathrm{i}}{{\mathrm{O}}_{\mathrm{2}}}}}$  = 0.12). Median (interquartile range) values for non-invasive V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ values during normoxic and hypoxic testing were 2.98 (2.43, 3.66) l/min and 1.84 (1.62, 2.25) l/min, respectively (P < 0.0001). Mean PA pressure increased significantly when transitioning from rest to submaximal exercise during normoxic and hypoxic conditions (P = 0.0014). Metrics of RV contractility including preload recruitable stroke work, dP/dtmax , and end-systolic pressure increased significantly during the transition from rest to exercise under normoxic and hypoxic conditions. Ventricular-arterial coupling was maintained during normoxic exercise at 50% V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ . During submaximal exercise at 50% of hypoxic V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ , ventricular-arterial coupling declined but remained within normal limits. In conclusion, resting and exertional RV functions are preserved in response to acute exposure to hypoxia at an F i O 2 ${F_{{\mathrm{i}}{{\mathrm{O}}_{\mathrm{2}}}}}$  = 0.12 and the associated increase in PA pressures. KEY POINTS: The healthy right ventricle augments contractility, lusitropy and energetics during periods of increased metabolic demand (e.g. exercise) in acute hypoxic conditions. During submaximal exercise, ventricular-arterial coupling decreases but remains within normal limits, ensuring that cardiac output and systemic perfusion are maintained. These data describe right ventricular physiological responses during submaximal exercise under conditions of acute hypoxia, such as occurs during exposure to high altitude and/or acute hypoxic respiratory failure.

10.
Card Electrophysiol Clin ; 16(1): 93-105, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38280817

ABSTRACT

Tactical athletes are individuals in the military, law enforcement, and other professions whose occupations have significant physical fitness requirements coupled with the potential for exposure to life-threatening situations. Such exposures can have varied hemodynamic effects on the cardiovascular system. It is crucial that their clinical evaluation is inclusive of specific occupational requirements. Safety protocols regarding medical clearance are relatively more stringent for this population than for competitive athletes due to the increased impact to the tactical athlete, their team, and the population they aim to serve and protect should they experience a cardiovascular event on the job.


Subject(s)
Military Personnel , Humans , Athletes
11.
JACC Heart Fail ; 12(1): 117-129, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37632493

ABSTRACT

BACKGROUND: Patients with heart failure with reduced ejection fraction (HFrEF) have persistent impairments in functional capacity after continuous-flow left ventricular assist device (CF-LVAD) implantation. OBJECTIVES: This study aims to characterize longitudinal changes in exercise hemodynamics and functional capacity among patients with HFrEF before and after CF-LVAD implantation. METHODS: Ten patients underwent 3 invasive cardiopulmonary exercise tests on upright cycle ergometry with pulmonary artery catheterization: 1) Visit 1 before CF-LVAD implantation; 2) Visit 2 after device implantation with CF-LVAD pump speed held constant at baseline speed; and 3) Visit 3 with increases in pump speed during exercise (median: 1,050 rpm [IQR: 750-1,150 rpm] and 220 rpm [IQR: 120-220 rpm] for HeartMate 3 and HeartWare VAD, respectively). Hemodynamics and direct Fick cardiac output were monitored using pulmonary artery catheterization. Gas exchange metrics were determined using indirect calorimetry. RESULTS: Maximal oxygen uptake (Visits 1, 2, and 3: 10.8 ± 2.5 mL/kg/min, 10.7 ± 2.2 mL/kg/min, and 11.5 ± 1.7 mL/kg/min; P = 0.92) did not improve after device implantation. Mean pulmonary arterial and pulmonary capillary wedge pressures increased significantly during submaximal and peak exercise on preimplantation testing (P < 0.01 for rest vs peak exercise) and remained elevated, with minimal change on Visits 2 and 3 regardless of whether pump speed was fixed or increased. CONCLUSIONS: Among patients with HFrEF, cardiovascular hemodynamics and exercise capacity were similar after CF-LVAD implantation, regardless of whether patients exercised at fixed or adjusted pump speeds during exercise. Further research is needed to determine methods by which LVADs may alleviate the HFrEF syndrome after device implantation. (Effect of mechanIcal circulatoRy support ON exercise capacity aMong pAtieNts with heart failure [IRONMAN]; NCT03078972).


Subject(s)
Heart Failure , Heart-Assist Devices , Ventricular Dysfunction, Left , Humans , Cardiac Output , Exercise Test/methods , Heart Failure/therapy , Hemodynamics , Stroke Volume , Ventricular Function, Left
12.
Cardiol Young ; 34(3): 604-613, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37664999

ABSTRACT

BACKGROUND: The cardiovascular adaptations associated with structured exercise training in Fontan patients remain unknown. We hypothesised that short-term training causes cardiac remodelling and parallel improvement in maximal exercise capacity (VO2 max) in these patients. METHODS AND RESULTS: Five patients, median age 19.5 (17.6-21.3) years, with a history of Fontan operation meeting inclusion/exclusion criteria, participated in a 3-month training programme designed to improve endurance. Magnetic resonance images for assessment of cardiac function, fibrosis, cardiac output, and liver elastography to assess stiffness were obtained at baseline and after training. Maximal exercise capacity (VO2 max) and cardiac output Qc (effective pulmonary blood flow) at rest and during exercise were measured (C2H2 rebreathing) at the same interval. VO2 max increased from median (IQR) 27.2 (26-28.7) to 29.6 (28.5-32.2) ml/min/kg (p = 0.04). There was an improvement in cardiac output (Qc) during maximal exercise testing from median (IQR) 10.3 (10.1-12.3) to 12.3 (10.9-14.9) l/min, but this change was variable (p = 0.14). Improvement in VO2 max correlated with an increase in ventricular mass (r = 0.95, p = 0.01), and improvement in Quality-of-life inventory (PedsQL) Cardiac scale scores for patient-reported symptoms (r = 0.90, p = 0.03) and cognitive problems (r = 0.89, p = 0.04). The correlation between VO2 max and Qc showed a positive trend but was not significant (r = 0.8, p = 0.08). No adverse cardiac or liver adaptations were noted. CONCLUSION: Short-term training improved exercise capacity in this Fontan pilot without any adverse cardiac or liver adaptations. These results warrant further study in a larger population and over a longer duration of time. TRIAL REGISTRATION NUMBER: NCT03263312, Unique Protocol ID: STU 122016-037; Registration Date: 18 January, 2017.


Subject(s)
Cardiovascular System , Heart , Humans , Young Adult , Exercise , Exercise Test , Pilot Projects , Adolescent
13.
J Appl Physiol (1985) ; 136(1): 141-150, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38031720

ABSTRACT

Posttraumatic stress disorder (PTSD) is associated with an increased risk of developing cardiovascular disease, especially in women. Evidence indicates that men with PTSD exhibit lower maximal oxygen uptake (V̇o2max) relative to controls; however, whether V̇o2max is blunted in women with PTSD remains unknown. Furthermore, it is unclear what determinants (i.e., central and/or peripheral) of V̇o2max are impacted by PTSD. Therefore, we evaluated the central (i.e., cardiac output; Q̇c) and peripheral (i.e., arteriovenous oxygen difference) determinants of V̇o2max in women with PTSD; hypothesizing that V̇o2max would be lower in women with PTSD compared with women without PTSD (controls), primarily due to smaller increases in stroke volume (SV), and therefore Q̇c. Oxygen uptake (V̇o2), heart rate (HR), Q̇c, SV, and arteriovenous oxygen difference were measured in women with PTSD (n = 14; mean [SD]: 43 [11] yr,) and controls (n = 17; 45 [11] yr) at rest, and during an incremental maximal treadmill exercise test, and the Q̇c/V̇o2 slope was calculated. V̇o2max was not different between women with and without PTSD (24.3 [5.6] vs. 26.4 [5.0] mL/kg/min; P = 0.265). However, women with PTSD had higher Q̇c [P = 0.002; primarily due to greater SV (P = 0.069), not HR (P = 0.285)], and lower arteriovenous oxygen difference (P = 0.002) throughout exercise compared with controls. Furthermore, the Q̇c/V̇o2 slope was steeper in women with PTSD relative to controls (6.6 [1.4] vs. 5.7 [1.0] AU; P = 0.033). Following maximal exercise, women with PTSD exhibited slower HR recovery than controls (P = 0.046). Thus, despite attenuated peripheral oxygen extraction, V̇o2max is not reduced in women with PTSD, likely due to larger increases in Q̇c.NEW & NOTEWORTHY The current study indicates that V̇o2max is not different between women with and without PTSD; however, women with PTSD exhibit blunted peripheral extraction of oxygen, thus requiring an increase in Q̇c to meet metabolic demand during exercise. Furthermore, following exercise, women with PTSD demonstrate impaired autonomic cardiovascular control relative to sedentary controls. We interpret these data to indicate that women with PTSD demonstrate aberrant cardiovascular responses during and immediately following fatiguing exercise.


Subject(s)
Stress Disorders, Post-Traumatic , Male , Humans , Female , Oxygen Consumption/physiology , Cardiac Output/physiology , Stroke Volume/physiology , Heart Rate/physiology , Exercise Test , Oxygen/metabolism
14.
Sci Rep ; 13(1): 17452, 2023 10 14.
Article in English | MEDLINE | ID: mdl-37838799

ABSTRACT

The safety of prolonged high-altitude stays and exercise for physically fit post-myocardial infarction (MI) patients is unclear. Myocardial tissue hypoxia and pulmonary hypertension can affect cardiac function and electrophysiology, possibly contributing to arrhythmias. We included four non-professional male athletes, clinically stable after left ventricular MI (three with ST-segment elevation MI and one with non-ST-segment elevation MI) treated with drug-eluting stents for single-vessel coronary artery disease. Oxygen levels were reduced to a minimum of 11.8%, then restored to 20.9%. We conducted electrocardiography (ECG), ergometry, and echocardiography assessments in normoxic and hypoxic conditions. With an average age of 57.8 ± 3.3 years and MI history 37 to 104 months prior, participants experienced a significant increase in QTc intervals during hypoxia using Bazett's (from 402 ± 13 to 417 ± 25 ms), Fridericia's (from 409 ± 12 to 419 ± 19 ms), and Holzmann's formulas (from 103 ± 4 to 107 ± 6%) compared to normoxia. This effect partially reversed during recovery. Echocardiographic signs of pulmonary hypertension during normobaric hypoxia correlated significantly with altered QTc intervals (p < 0.001). Despite good health and complete revascularization following MI, susceptibility to hypoxia-induced QTc prolongation and ventricular ectopic beats persists, especially during physical activity. MI survivors planning high-altitude activities should consult cardiovascular specialists with high-altitude medicine expertise.


Subject(s)
Hypertension, Pulmonary , Myocardial Infarction , Non-ST Elevated Myocardial Infarction , Ventricular Premature Complexes , Humans , Male , Middle Aged , Electrocardiography , Hypoxia
15.
Circulation ; 148(25): 2008-2016, 2023 12 19.
Article in English | MEDLINE | ID: mdl-37830218

ABSTRACT

BACKGROUND: Despite advances in medical and cardiac resynchronization therapy (CRT), individuals with chronic congestive heart failure (CHF) have persistent symptoms, including exercise intolerance. Optimizing cardio-locomotor coupling may increase stroke volume and skeletal muscle perfusion as previously shown in healthy runners. Therefore, we tested the hypothesis that exercise stroke volume and cardiac output would be higher during fixed-paced walking when steps were synchronized with the diastolic compared with systolic portion of the cardiac cycle in patients with CHF and CRT. METHODS: Ten participants (58±17 years of age; 40% female) with CHF and previously implanted CRT pacemakers completed 5-minute bouts of walking on a treadmill (range, 1.5-3 mph). Participants were randomly assigned to first walking to an auditory tone to synchronize their foot strike to either the systolic (0% or 100±15% of the R-R interval) or diastolic phase (45±15% of the R-R interval) of their cardiac cycle and underwent assessments of oxygen uptake (V̇o2; indirect calorimetry) and cardiac output (acetylene rebreathing). Data were compared through paired-samples t tests. RESULTS: V̇o2 was similar between conditions (diastolic 1.02±0.44 versus systolic 1.05±0.42 L/min; P=0.299). Compared with systolic walking, stroke volume (diastolic 80±28 versus systolic 74±26 mL; P=0.003) and cardiac output (8.3±3.5 versus 7.9±3.4 L/min; P=0.004) were higher during diastolic walking; heart rate (paced) was not different between conditions. Mean arterial pressure was significantly lower during diastolic walking (85±12 versus 98±20 mm Hg; P=0.007). CONCLUSIONS: In patients with CHF who have received CRT, diastolic stepping increases stroke volume and oxygen delivery and decreases afterload. We speculate that, if added to pacemakers, this cardio-locomotor coupling technology may maximize CRT efficiency and increase exercise participation and quality of life in patients with CHF.


Subject(s)
Cardiac Resynchronization Therapy , Heart Failure , Humans , Female , Male , Pilot Projects , Quality of Life , Heart Failure/therapy , Hemodynamics/physiology , Stroke Volume/physiology , Oxygen
16.
J Am Heart Assoc ; 12(20): e031399, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37830338

ABSTRACT

Background Moderate intensity exercise training (MIT) is safe and effective for patients with hypertrophic cardiomyopathy, yet the efficacy of high intensity training (HIT) remains unknown. This study aimed to compare the efficacy of HIT compared with MIT in patients with hypertrophic cardiomyopathy. Methods and Results Patients with hypertrophic cardiomyopathy were randomized to either 5 months of MIT, or 1 month of MIT followed by 4 months of progressive HIT. Peak oxygen uptake (V˙O2; Douglas bags), cardiac output (acetylene rebreathing), and arteriovenous oxygen difference (Fick equation) were measured before and after training. Left ventricular outflow gradient and volumes were measured by echocardiography. Fifteen patients completed training (MIT, n=8, age 52±7 years; HIT, n=7, age 42±8 years). Both HIT and MIT improved peak V˙O2 by 1.3 mL/kg per min (P=0.009). HIT (+1.5 mL/kg per min) had a slightly greater effect than MIT (+1.1 mL/kg per min) but with no statistical difference (group×exercise P=0.628). A greater augmentation of arteriovenous oxygen difference occurred with exercise (Δ1.6 mL/100 mL P=0.005). HIT increased left ventricular end-diastolic volume (+17 mL, group×exercise P=0.015) compared with MIT. No serious arrhythmias or adverse cardiac events occurred. Conclusions This randomized trial of exercise training in patients with hypertrophic cardiomyopathy demonstrated that both HIT and MIT improved fitness without clear superiority of either. Although the study was underpowered for safety outcomes, no serious adverse events occurred. Exercise training resulted in salutary peripheral and cardiac adaptations. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT03335332.


Subject(s)
Cardiomyopathy, Hypertrophic , Cardiovascular System , Humans , Middle Aged , Adult , Exercise , Cardiomyopathy, Hypertrophic/diagnosis , Cardiomyopathy, Hypertrophic/therapy , Heart , Oxygen
18.
J Appl Physiol (1985) ; 135(6): 1215-1235, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37855034

ABSTRACT

Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality in women in developed societies. Unfavorable structural and functional adaptations within the heart and central blood vessels with sedentary aging in women can act as the substrate for the development of debilitating CVD conditions such as heart failure with preserved ejection fraction (HFpEF). The large decline in cardiorespiratory fitness, as indicated by maximal or peak oxygen uptake (V̇o2max and V̇o2peak, respectively), that occurs in women as they age significantly affects their health and chronic disease status, as well as the risk of cardiovascular and all-cause mortality. Midlife and older women who have performed structured endurance exercise training for several years or decades of their adult lives exhibit a V̇o2max and cardiac and vascular structure and function that are on par or even superior to much younger sedentary women. Therefore, regular endurance exercise training appears to be an effective preventative strategy for mitigating the adverse physiological cardiovascular adaptations associated with sedentary aging in women. Herein, we narratively describe the aging and short- and long-term endurance exercise training adaptations in V̇o2max, cardiac structure, and left ventricular systolic and diastolic function at rest and exercise in midlife and older women. The role of circulating estrogens on cardiac structure and function is described for consideration in the timing of exercise interventions to maximize beneficial adaptations. Current research gaps and potential areas for future investigation to advance our understanding in this critical knowledge area are highlighted.


Subject(s)
Cardiorespiratory Fitness , Heart Failure , Adult , Humans , Female , Aged , Stroke Volume/physiology , Aging/physiology , Exercise/physiology , Physical Endurance , Oxygen Consumption/physiology , Ventricular Function, Left/physiology
19.
Exp Physiol ; 108(12): 1560-1568, 2023 12.
Article in English | MEDLINE | ID: mdl-37824038

ABSTRACT

Compression sonography has been proposed as a method for non-invasive measurement of venous pressures during spaceflight, but initial reports of venous pressure measured by compression ultrasound conflict with prior reports of invasively measured central venous pressure (CVP). The aim of this study is to determine the agreement of compression sonography of the internal jugular vein (IJVP) with invasive measures of CVP over a range of pressures relevant to microgravity exposure. Ten healthy volunteers (18-55 years, five female) completed two 3-day sessions of supine bed rest to simulate microgravity. IJVP and CVP were measured in the seated position, and in the supine position throughout 3 days of bed rest. The range of CVP recorded was in line with previous reports of CVP during changes in posture on Earth and in microgravity. The correlation between IJVP and CVP was poor when measured during spontaneous breathing (r = 0.29; R2  = 0.09; P = 0.0002; standard error of the estimate (SEE) = 3.0 mmHg) or end-expiration CVP (CVPEE ; r = 0.19; R2  = 0.04; P = 0.121; SEE = 3.0 mmHg). There was a modest correlation between the change in CVP and the change in IJVP for both spontaneous ΔCVP (r = 0.49; R2  = 0.24; P < 0.0001) and ΔCVPEE (r = 0.58; R2  = 0.34; P < 0.0001). Bland-Altman analysis of IJVP revealed a large positive bias compared to spontaneous breathing CVP (3.6 mmHg; SD = 4.0; CV = 85%; P < 0.0001) and CVPEE (3.6 mmHg; SD = 4.2; CV = 84%; P < 0.0001). Assessment of absolute IJVP via compression sonography correlated poorly with direct measurements of CVP by invasive catheterization over a range of venous pressures that are physiologically relevant to spaceflight. However, compression sonography showed modest utility for tracking changes in venous pressure over time. NEW FINDINGS: What is the central question of this study? Compression sonography has been proposed as a novel method for non-invasive measurement of venous pressures during spaceflight. However, the accuracy has not yet been confirmed in the range of CVP experienced by astronauts during spaceflight. What is the main finding and its importance? Our data show that compression sonography of the internal jugular vein correlates poorly with direct measurement of central venous pressures in a range that is physiologically relevant to spaceflight. However, compression sonography showed modest utility for tracking changes in venous pressure over time.


Subject(s)
Bed Rest , Jugular Veins , Humans , Female , Jugular Veins/diagnostic imaging , Jugular Veins/physiology , Venous Pressure , Central Venous Pressure/physiology , Ultrasonography
20.
Respir Physiol Neurobiol ; 318: 104167, 2023 12.
Article in English | MEDLINE | ID: mdl-37758032

ABSTRACT

Heart failure with preserved ejection fraction (HFpEF) patients have an increased ventilatory demand. Whether their ventilatory capacity can meet this increased demand is unknown, especially in those with obesity. Body composition (DXA) and pulmonary function were measured in 20 patients with HFpEF (69 ± 6 yr;9 M/11 W). Cardiorespiratory responses, breathing mechanics, and ratings of perceived breathlessness (RPB, 0-10) were measured at rest, 20 W, and peak exercise. FVC correlated with %body fat (R2 =0.51,P = 0.0006), V̇O2peak (%predicted,R2 =0.32,P = 0.001), and RPB (R2 =0.58,P = 0.0004). %Body fat correlated with end-expiratory lung volume at rest (R2 =0.76,P < 0.001), 20 W (R2 =0.72,P < 0.001), and peak exercise (R2 =0.74,P < 0.001). Patients were then divided into two groups: those with lower ventilatory reserve (FVC<3 L,2 M/10 W) and those with higher ventilatory reserve (FVC>3.8 L,7 M/1 W). V̇O2peak was ∼22% less (p < 0.05) and RPB was twice as high at 20 W (p < 0.01) in patients with lower ventilatory reserve. Ventilatory reserves are limited in patients with HFpEF and obesity; indeed, the margin between ventilatory demand and capacity is so narrow that exercise capacity could be ventilatory limited in many patients.


Subject(s)
Heart Failure , Humans , Stroke Volume , Lung , Dyspnea , Exercise Test , Exercise Tolerance , Obesity
SELECTION OF CITATIONS
SEARCH DETAIL
...