Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ChemMedChem ; 12(21): 1739-1742, 2017 11 08.
Article in English | MEDLINE | ID: mdl-28901042

ABSTRACT

Calcium coordination solids were synthesized and evaluated for delivery of olsalazine (H4 olz), an anti-inflammatory compound used for treatment of ulcerative colitis. The materials include one-dimensional Ca(H2 olz)⋅4 H2 O chains, two-dimensional Ca(H2 olz)⋅2 H2 O sheets, and a three-dimensional metal-organic framework Ca(H2 olz)⋅2DMF (DMF=N,N-dimethylformamide). The framework undergoes structural changes in response to solvent, forming a dense Ca(H2 olz) phase when exposed to aqueous HCl. The compounds Ca(H2 olz)⋅x H2 O (x=0, 2, 4) were each pressed into pellets and exposed to simulated gastrointestinal fluids to mimic the passage of a pill from the acidic stomach to the pH-neutral intestines. All three calcium materials exhibited a delayed release of olsalazine relative to Na2 (H2 olz), the commercial formulation, illustrating how formulation of a drug within an extended coordination solid can serve to tune its solubility and performance.


Subject(s)
Aminosalicylic Acids/chemistry , Calcium/chemistry , Coordination Complexes/chemistry , Delayed-Action Preparations , Drug Carriers/chemistry , Hydrogen-Ion Concentration
2.
J Am Chem Soc ; 138(32): 10143-50, 2016 08 17.
Article in English | MEDLINE | ID: mdl-27486905

ABSTRACT

The drug olsalazine (H4olz) was employed as a ligand to synthesize a new series of mesoporous metal-organic frameworks that are expanded analogues of the well-known M2(dobdc) materials (dobdc(4-) = 2,5-dioxido-1,4-benzenedicarboxylate; M-MOF-74). The M2(olz) frameworks (M = Mg, Fe, Co, Ni, and Zn) exhibit high surface areas with large hexagonal pore apertures that are approximately 27 Å in diameter. Variable temperature H2 adsorption isotherms revealed strong adsorption at the open metal sites, and in situ infrared spectroscopy experiments on Mg2(olz) and Ni2(olz) were used to determine site-specific H2 binding enthalpies. In addition to its capabilities for gas sorption, the highly biocompatible Mg2(olz) framework was also evaluated as a platform for the delivery of olsalazine and other encapsulated therapeutics. The Mg2(olz) material (86 wt % olsalazine) was shown to release the therapeutic linker through dissolution of the framework under simulated physiological conditions. Furthermore, Mg2(olz) was used to encapsulate phenethylamine (PEA), a model drug for a broad class of bioactive compounds. Under simulated physiological conditions, Mg2(olz)(PEA)2 disassembled to release PEA from the pores and olsalazine from the framework itself, demonstrating that multiple therapeutic components can be delivered together at different rates. The low toxicity, high surface areas, and coordinatively unsaturated metal sites make these M2(olz) materials promising for a range of potential applications, including drug delivery in the treatment of gastrointestinal diseases.


Subject(s)
Aminosalicylic Acids/chemistry , Biocompatible Materials/chemistry , Drug Delivery Systems , Adsorption , Binding Sites , Chemistry, Organic , Drug Carriers , Gastrointestinal Diseases/drug therapy , Humans , Hydrogen/chemistry , Ligands , Metal-Organic Frameworks , Metals/chemistry , Organic Chemicals/chemistry , Phenethylamines/chemistry , Phthalic Acids , Spectrophotometry, Infrared , Surface Properties
3.
ACS Chem Biol ; 10(5): 1269-77, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25695325

ABSTRACT

The phosphotungstate anion (PTA) is widely used to facilitate the precipitation of disease-causing prion protein (PrP(Sc)) from infected tissue for applications in structural studies and diagnostic approaches. However, the mechanism of this precipitation is not understood. In order to elucidate the nature of the PTA interaction with PrP(Sc) under physiological conditions, solutions of PTA were characterized by NMR spectroscopy at varying pH. At neutral pH, the parent [PW12O40](3-) ion decomposes to give a lacunary [PW11O39](7-) (PW11) complex and a single orthotungstate anion [WO4](2-) (WO4). To measure the efficacy of each component of PTA, increasing concentrations of PW11, WO4, and mixtures thereof were used to precipitate PrP(Sc) from brain homogenates of scrapie prion-infected mice. The amount of PrP(Sc) isolated, quantified by ELISA and immunoblotting, revealed that both PW11 and WO4 contribute to PrP(Sc) precipitation. Incubation with sarkosyl, PTA, or individual components of PTA resulted in separation of higher-density PrP aggregates from the neuronal lipid monosialotetrahexosylganglioside (GM1), as observed by sucrose gradient centrifugation. These experiments revealed that yield and purity of PrP(Sc) were greater with polyoxometalates (POMs), which substantially supported the separation of lipids from PrP(Sc) in the samples. Interaction of POMs and sarkosyl with brain homogenates promoted the formation of fibrillar PrP(Sc) aggregates prior to centrifugation, likely through the separation of lipids like GM1 from PrP(Sc). We propose that this separation of lipids from PrP is a major factor governing the facile precipitation of PrP(Sc) by PTA from tissue and might be optimized further for the detection of prions.


Subject(s)
Phosphotungstic Acid/chemistry , Prions/chemistry , Scrapie/pathology , Animals , Blotting, Western , Brain/pathology , Enzyme-Linked Immunosorbent Assay , Mice
4.
J Am Chem Soc ; 131(27): 9562-70, 2009 Jul 15.
Article in English | MEDLINE | ID: mdl-19537757

ABSTRACT

The detection of bacterial spores via dipicolinate-triggered lanthanide luminescence has been improved in terms of detection limit, stability, and susceptibility to interferents by use of lanthanide-macrocycle binary complexes. Specifically, we compared the effectiveness of Sm, Eu, Tb, and Dy complexes with the macrocycle 1,4,7,10-tetraazacyclododecane-1,7-diacetate (DO2A) to the corresponding lanthanide aquo ions. The Ln(DO2A)(+) binary complexes bind dipicolinic acid (DPA), a major constituent of bacterial spores, with greater affinity and demonstrate significant improvement in bacterial spore detection. Of the four luminescent lanthanides studied, the terbium complex exhibits the greatest dipicolinate binding affinity (100-fold greater than Tb(3+) alone, and 10-fold greater than other Ln(DO2A)(+) complexes) and highest quantum yield. Moreover, the inclusion of DO2A extends the pH range over which Tb-DPA coordination is stable, reduces the interference of calcium ions nearly 5-fold, and mitigates phosphate interference 1000-fold compared to free terbium alone. In addition, detection of Bacillus atrophaeus bacterial spores was improved by the use of Tb(DO2A)(+), yielding a 3-fold increase in the signal-to-noise ratio over Tb(3+). Out of the eight cases investigated, the Tb(DO2A)(+) binary complex is best for the detection of bacterial spores.


Subject(s)
Lanthanoid Series Elements/chemistry , Luminescent Agents/chemistry , Macrocyclic Compounds/chemistry , Spores, Bacterial/chemistry , Crystallography, X-Ray , Hydrogen-Ion Concentration , Temperature
5.
Anal Chem ; 80(15): 5750-4, 2008 Aug 01.
Article in English | MEDLINE | ID: mdl-18578548

ABSTRACT

A high-affinity, binary Eu(3+) receptor site consisting of 1,4,7,10-tetraazacyclododecane-1,7-diacetate (DO2A) was constructed with the goal of improving the detection of dipicolinic acid (DPA), a major component of bacterial spores. Ternary Eu(DO2A)(DPA)(-) complex solutions (1.0 microM crystallographically characterized TBA x Eu(DO2A)(DPA)) were titrated with EuCl3 (1.0 nM-1.0 mM); increased Eu(3+) concentration resulted in a shift in equilibrium population from Eu(DO2A)(DPA)(-) to Eu(DO2A)(+) and Eu(DPA)(+), which was monitored via the ligand field sensitive (5)D0 --> (7)F3 transition (lambda(em) = 670-700 nm) using luminescence spectroscopy. A best fit of luminescence intensity titration data to a two-state thermodynamic model yielded the competition equilibrium constant (Kc), which in conjunction with independent measurement of the Eu(DPA)(+) formation constant (Ka) allowed calculation of the ternary complex formation constant (Ka'). With this binding affinity by competition (BAC) assay, we determined that Ka' = 10(8.21) M(-1), which is approximately 1 order of magnitude greater than the formation of Eu(DPA)(+). In general, the BAC assay can be employed to determine ligand binding constants of systems where the lanthanide platform (usually a binary complex) is stable and the ligand bound versus unbound states can be spectroscopically distinguished.


Subject(s)
Lanthanoid Series Elements/chemistry , Luminescent Measurements , Picolinic Acids/analysis , Binding Sites , Ligands , Organometallic Compounds , Picolinic Acids/chemistry , Spectrum Analysis , Spores, Bacterial/chemistry , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...