Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2023 May 22.
Article in English | MEDLINE | ID: mdl-37293114

ABSTRACT

Macrophages and dendritic cells have long been appreciated for their ability to migrate to and engulf dying cells and debris, including some of the billions of cells that are naturally eliminated from our body daily. However, a substantial number of these dying cells are cleared by 'non-professional phagocytes', local epithelial cells that are critical to organismal fitness. How non-professional phagocytes sense and digest nearby apoptotic corpses while still performing their normal tissue functions is unclear. Here, we explore the molecular mechanisms underlying their multifunctionality. Exploiting the cyclical bouts of tissue regeneration and degeneration during the hair cycle, we show that stem cells can transiently become non-professional phagocytes when confronted with dying cells. Adoption of this phagocytic state requires both local lipids produced by apoptotic corpses to activate RXRα, and tissue-specific retinoids for RARγ activation. This dual factor dependency enables tight regulation of the genes requisite to activate phagocytic apoptotic clearance. The tunable phagocytic program we describe here offers an effective mechanism to offset phagocytic duties against the primary stem cell function of replenishing differentiated cells to preserve tissue integrity during homeostasis. Our findings have broad implications for other non-motile stem or progenitor cells which experience cell death in an immune-privileged niche.

2.
Cell ; 186(10): 2127-2143.e22, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37098344

ABSTRACT

Pathogen infection and tissue injury are universal insults that disrupt homeostasis. Innate immunity senses microbial infections and induces cytokines/chemokines to activate resistance mechanisms. Here, we show that, in contrast to most pathogen-induced cytokines, interleukin-24 (IL-24) is predominately induced by barrier epithelial progenitors after tissue injury and is independent of microbiome or adaptive immunity. Moreover, Il24 ablation in mice impedes not only epidermal proliferation and re-epithelialization but also capillary and fibroblast regeneration within the dermal wound bed. Conversely, ectopic IL-24 induction in the homeostatic epidermis triggers global epithelial-mesenchymal tissue repair responses. Mechanistically, Il24 expression depends upon both epithelial IL24-receptor/STAT3 signaling and hypoxia-stabilized HIF1α, which converge following injury to trigger autocrine and paracrine signaling involving IL-24-mediated receptor signaling and metabolic regulation. Thus, parallel to innate immune sensing of pathogens to resolve infections, epithelial stem cells sense injury signals to orchestrate IL-24-mediated tissue repair.


Subject(s)
Cytokines , Wounds and Injuries , Animals , Mice , Adaptive Immunity , Chemokines , Epidermis , Immunity, Innate , Wounds and Injuries/immunology
3.
Nature ; 612(7940): 555-563, 2022 12.
Article in English | MEDLINE | ID: mdl-36450983

ABSTRACT

Squamous cell carcinomas are triggered by marked elevation of RAS-MAPK signalling and progression from benign papilloma to invasive malignancy1-4. At tumour-stromal interfaces, a subset of tumour-initiating progenitors, the cancer stem cells, obtain increased resistance to chemotherapy and immunotherapy along this pathway5,6. The distribution and changes in cancer stem cells during progression from a benign state to invasive squamous cell carcinoma remain unclear. Here we show in mice that, after oncogenic RAS activation, cancer stem cells rewire their gene expression program and trigger self-propelling, aberrant signalling crosstalk with their tissue microenvironment that drives their malignant progression. The non-genetic, dynamic cascade of intercellular exchanges involves downstream pathways that are often mutated in advanced metastatic squamous cell carcinomas with high mutational burden7. Coupling our clonal skin HRASG12V mouse model with single-cell transcriptomics, chromatin landscaping, lentiviral reporters and lineage tracing, we show that aberrant crosstalk between cancer stem cells and their microenvironment triggers angiogenesis and TGFß signalling, creating conditions that are conducive for hijacking leptin and leptin receptor signalling, which in turn launches downstream phosphoinositide 3-kinase (PI3K)-AKT-mTOR signalling during the benign-to-malignant transition. By functionally examining each step in this pathway, we reveal how dynamic temporal crosstalk with the microenvironment orchestrated by the stem cells profoundly fuels this path to malignancy. These insights suggest broad implications for cancer therapeutics.


Subject(s)
Carcinoma, Squamous Cell , Genes, ras , Neoplastic Stem Cells , Signal Transduction , Tumor Microenvironment , ras Proteins , Animals , Mice , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Leptin/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Neovascularization, Pathologic , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , ras Proteins/genetics , ras Proteins/metabolism , Transforming Growth Factor beta/metabolism
4.
Nature ; 586(7827): E9, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32913346

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Nature ; 585(7825): 433-439, 2020 09.
Article in English | MEDLINE | ID: mdl-32879493

ABSTRACT

Loss of normal tissue architecture is a hallmark of oncogenic transformation1. In developing organisms, tissues architectures are sculpted by mechanical forces during morphogenesis2. However, the origins and consequences of tissue architecture during tumorigenesis remain elusive. In skin, premalignant basal cell carcinomas form 'buds', while invasive squamous cell carcinomas initiate as 'folds'. Here, using computational modelling, genetic manipulations and biophysical measurements, we identify the biophysical underpinnings and biological consequences of these tumour architectures. Cell proliferation and actomyosin contractility dominate tissue architectures in monolayer, but not multilayer, epithelia. In stratified epidermis, meanwhile, softening and enhanced remodelling of the basement membrane promote tumour budding, while stiffening of the basement membrane promotes folding. Additional key forces stem from the stratification and differentiation of progenitor cells. Tumour-specific suprabasal stiffness gradients are generated as oncogenic lesions progress towards malignancy, which we computationally predict will alter extensile tensions on the tumour basement membrane. The pathophysiologic ramifications of this prediction are profound. Genetically decreasing the stiffness of basement membranes increases membrane tensions in silico and potentiates the progression of invasive squamous cell carcinomas in vivo. Our findings suggest that mechanical forces-exerted from above and below progenitors of multilayered epithelia-function to shape premalignant tumour architectures and influence tumour progression.


Subject(s)
Basement Membrane/metabolism , Carcinoma, Basal Cell/metabolism , Carcinoma, Basal Cell/pathology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Actomyosin/metabolism , Animals , Carcinogenesis , Cell Proliferation , Computer Simulation , Disease Progression , Epithelial Cells/metabolism , Extracellular Matrix/metabolism , Female , Humans , Mice , Neoplasm Invasiveness , Pliability
6.
Elife ; 92020 04 20.
Article in English | MEDLINE | ID: mdl-32310087

ABSTRACT

To spatially co-exist and differentially specify fates within developing tissues, morphogenetic cues must be correctly positioned and interpreted. Here, we investigate mouse hair follicle development to understand how morphogens operate within closely spaced, fate-diverging progenitors. Coupling transcriptomics with genetics, we show that emerging hair progenitors produce both WNTs and WNT inhibitors. Surprisingly, however, instead of generating a negative feedback loop, the signals oppositely polarize, establishing sharp boundaries and consequently a short-range morphogen gradient that we show is essential for three-dimensional pattern formation. By establishing a morphogen gradient at the cellular level, signals become constrained. The progenitor preserves its WNT signaling identity and maintains WNT signaling with underlying mesenchymal neighbors, while its overlying epithelial cells become WNT-restricted. The outcome guarantees emergence of adjacent distinct cell types to pattern the tissue.


Subject(s)
Hair Follicle/embryology , Stem Cells/physiology , Wnt Proteins/antagonists & inhibitors , Wnt Signaling Pathway/physiology , Animals , Cell Polarity , Mice , Morphogenesis/physiology , Wnt Proteins/physiology
7.
Science ; 367(6483)2020 03 13.
Article in English | MEDLINE | ID: mdl-32165560

ABSTRACT

At the body surface, skin's stratified squamous epithelium is challenged by environmental extremes. The surface of the skin is composed of enucleated, flattened surface squames. They derive from underlying, transcriptionally active keratinocytes that display filaggrin-containing keratohyalin granules (KGs) whose function is unclear. Here, we found that filaggrin assembles KGs through liquid-liquid phase separation. The dynamics of phase separation governed terminal differentiation and were disrupted by human skin barrier disease-associated mutations. We used fluorescent sensors to investigate endogenous phase behavior in mice. Phase transitions during epidermal stratification crowded cellular spaces with liquid-like KGs whose coalescence was restricted by keratin filament bundles. We imaged cells as they neared the skin surface and found that environmentally regulated KG phase dynamics drive squame formation. Thus, epidermal structure and function are driven by phase-separation dynamics.


Subject(s)
Epidermis/physiology , Phase Transition , Animals , Cytoplasm/metabolism , Filaggrin Proteins , Humans , Intermediate Filament Proteins/genetics , Intermediate Filament Proteins/metabolism , Keratinocytes/metabolism , Keratinocytes/physiology , Keratins/metabolism , Mice
8.
Science ; 366(6470): 1218-1225, 2019 12 06.
Article in English | MEDLINE | ID: mdl-31672914

ABSTRACT

Tissues rely on stem cells (SCs) for homeostasis and wound repair. SCs reside in specialized microenvironments (niches) whose complexities and roles in orchestrating tissue growth are still unfolding. Here, we identify lymphatic capillaries as critical SC-niche components. In skin, lymphatics form intimate networks around hair follicle (HF) SCs. When HFs regenerate, lymphatic-SC connections become dynamic. Using a mouse model, we unravel a secretome switch in SCs that controls lymphatic behavior. Resting SCs express angiopoietin-like protein 7 (Angptl7), promoting lymphatic drainage. Activated SCs switch to Angptl4, triggering transient lymphatic dissociation and reduced drainage. When lymphatics are perturbed or the secretome switch is disrupted, HFs cycle precociously and tissue regeneration becomes asynchronous. In unearthing lymphatic capillaries as a critical SC-niche element, we have learned how SCs coordinate their activity across a tissue.


Subject(s)
Hair Follicle/physiology , Lymphatic Vessels/physiology , Regeneration , Stem Cell Niche/physiology , Stem Cells/physiology , Angiopoietin-Like Protein 4/metabolism , Angiopoietin-Like Protein 7 , Angiopoietin-like Proteins/metabolism , Animals , Homeodomain Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Stem Cells/metabolism , Tumor Suppressor Proteins/genetics
9.
Elife ; 82019 09 25.
Article in English | MEDLINE | ID: mdl-31556874

ABSTRACT

During mammalian embryogenesis, extensive cellular remodeling is needed for tissue morphogenesis. As effectors of cytoskeletal dynamics, Rho GTPases and their regulators are likely involved, but their daunting complexity has hindered progress in dissecting their functions. We overcome this hurdle by employing high throughput in utero RNAi-mediated screening to identify key Rho regulators of skin morphogenesis. Our screen unveiled hitherto unrecognized roles for Rho-mediated cytoskeletal remodeling events that impact hair follicle specification, differentiation, downgrowth and planar cell polarity. Coupling our top hit with gain/loss-of-function genetics, interactome proteomics and tissue imaging, we show that RHOU, an atypical Rho, governs the cytoskeletal-junction dynamics that establish columnar shape and planar cell polarity in epidermal progenitors. Conversely, RHOU downregulation is required to remodel to a conical cellular shape that enables hair bud invagination and downgrowth. Our findings underscore the power of coupling screens with proteomics to unravel the physiological significance of complex gene families.


Subject(s)
Gene Expression Regulation , Morphogenesis , Skin/embryology , rho GTP-Binding Proteins/metabolism , Animals , Gene Silencing , Genetic Testing , Mice , RNA Interference
10.
Nature ; 569(7757): 497-502, 2019 05.
Article in English | MEDLINE | ID: mdl-31092920

ABSTRACT

Cell competition-the sensing and elimination of less fit 'loser' cells by neighbouring 'winner' cells-was first described in Drosophila. Although cell competition has been proposed as a selection mechanism to optimize tissue and organ development, its evolutionary generality remains unclear. Here, by using live imaging, lineage tracing, single-cell transcriptomics and genetics, we identify two cell competition mechanisms that sequentially shape and maintain the architecture of stratified tissue during skin development in mice. In the single-layered epithelium of the early embryonic epidermis, winner progenitors kill and subsequently clear neighbouring loser cells by engulfment. Later, as the tissue begins to stratify, the basal layer instead expels losers through upward flux of differentiating progeny. This cell competition switch is physiologically relevant: when it is perturbed, so too is barrier formation. Our findings show that cell competition is a selective force that optimizes vertebrate tissue function, and illuminate how a tissue dynamically adjusts cell competition strategies to preserve fitness as its architectural complexity increases during morphogenesis.


Subject(s)
Cell Communication , Epidermal Cells/cytology , Epidermis/embryology , Morphogenesis , Animals , Apoptosis , Clone Cells/cytology , Drosophila melanogaster/cytology , Drosophila melanogaster/embryology , Epidermal Cells/metabolism , Female , Male , Mice , Phagocytosis , RNA-Seq , Single-Cell Analysis
11.
Cell ; 177(5): 1172-1186.e14, 2019 05 16.
Article in English | MEDLINE | ID: mdl-31031009

ABSTRACT

Our bodies are equipped with powerful immune surveillance to clear cancerous cells as they emerge. How tumor-initiating stem cells (tSCs) that form and propagate cancers equip themselves to overcome this barrier remains poorly understood. To tackle this problem, we designed a skin cancer model for squamous cell carcinoma (SCC) that can be effectively challenged by adoptive cytotoxic T cell transfer (ACT)-based immunotherapy. Using single-cell RNA sequencing (RNA-seq) and lineage tracing, we found that transforming growth factor ß (TGF-ß)-responding tSCs are superior at resisting ACT and form the root of tumor relapse. Probing mechanism, we discovered that during malignancy, tSCs selectively acquire CD80, a surface ligand previously identified on immune cells. Moreover, upon engaging cytotoxic T lymphocyte antigen-4 (CTLA4), CD80-expressing tSCs directly dampen cytotoxic T cell activity. Conversely, upon CTLA4- or TGF-ß-blocking immunotherapies or Cd80 ablation, tSCs become vulnerable, diminishing tumor relapse after ACT treatment. Our findings place tSCs at the crux of how immune checkpoint pathways are activated.


Subject(s)
Adoptive Transfer , Carcinoma, Squamous Cell/immunology , Immunity, Cellular , Immunologic Surveillance , Neoplastic Stem Cells/immunology , Skin Neoplasms/immunology , T-Lymphocytes/immunology , Animals , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/therapy , Cell Line, Tumor , Humans , Mice , Mice, Transgenic , Neoplasm Proteins/immunology , Neoplastic Stem Cells/pathology , Skin Neoplasms/pathology , Skin Neoplasms/therapy , T-Lymphocytes/pathology
12.
Cell Stem Cell ; 22(3): 398-413.e7, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29337183

ABSTRACT

Tissue regeneration relies on resident stem cells (SCs), whose activity and lineage choices are influenced by the microenvironment. Exploiting the synchronized, cyclical bouts of tissue regeneration in hair follicles (HFs), we investigate how microenvironment dynamics shape the emergence of stem cell lineages. Employing epigenetic and ChIP-seq profiling, we uncover how signal-dependent transcription factors couple spatiotemporal cues to chromatin dynamics, thereby choreographing stem cell lineages. Using enhancer-driven reporters, mutagenesis, and genetics, we show that simultaneous BMP-inhibitory and WNT signals set the stage for lineage choices by establishing chromatin platforms permissive for diversification. Mechanistically, when binding of BMP effector pSMAD1 is relieved, enhancers driving HF-stem cell master regulators are silenced. Concomitantly, multipotent, lineage-fated enhancers silent in HF-stem cells become activated by exchanging WNT effectors TCF3/4 for LEF1. Throughout regeneration, lineage enhancers continue reliance upon LEF1 but then achieve specificity by accommodating additional incoming signaling effectors. Barriers to progenitor plasticity increase when diverse, signal-sensitive transcription factors shape LEF1-regulated enhancer dynamics.


Subject(s)
Cell Lineage , Chromatin Assembly and Disassembly , Hair Follicle/cytology , Signal Transduction , Stem Cells/cytology , Stem Cells/metabolism , Acetylation , Animals , Base Sequence , Bone Morphogenetic Proteins/metabolism , Chromatin/metabolism , Enhancer Elements, Genetic/genetics , Histones/metabolism , Lysine/metabolism , Mice, Inbred C57BL , Phosphorylation , Regeneration , Smad1 Protein/metabolism , Time Factors , Transcription Factors/metabolism , Wnt Signaling Pathway
13.
Science ; 355(6324)2017 02 03.
Article in English | MEDLINE | ID: mdl-28154022

ABSTRACT

Balancing growth and differentiation is essential to tissue morphogenesis and homeostasis. How imbalances arise in disease states is poorly understood. To address this issue, we identified transcripts differentially expressed in mouse basal epidermal progenitors versus their differentiating progeny and those altered in cancers. We used an in vivo RNA interference screen to unveil candidates that altered the equilibrium between the basal proliferative layer and suprabasal differentiating layers forming the skin barrier. We found that epidermal progenitors deficient in the peroxisome-associated protein Pex11b failed to segregate peroxisomes properly and entered a mitotic delay that perturbed polarized divisions and skewed daughter fates. Together, our findings unveil a role for organelle inheritance in mitosis, spindle alignment, and the choice of daughter progenitors to differentiate or remain stem-like.


Subject(s)
Cell Differentiation/physiology , Epidermis/embryology , Mitosis/physiology , Neoplasms/pathology , Peroxisomes/physiology , Stem Cells/cytology , Animals , Cell Differentiation/genetics , Cell Proliferation , Epidermal Cells , Gene Expression , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mitosis/genetics , Neoplasms/genetics , Peroxisomes/genetics , Peroxisomes/metabolism , RNA Interference , Spindle Apparatus/physiology , Transcriptome
14.
Nature ; 541(7638): 494-499, 2017 01 26.
Article in English | MEDLINE | ID: mdl-28077873

ABSTRACT

We are just beginning to understand how translational control affects tumour initiation and malignancy. Here we use an epidermis-specific, in vivo ribosome profiling strategy to investigate the translational landscape during the transition from normal homeostasis to malignancy. Using a mouse model of inducible SOX2, which is broadly expressed in oncogenic RAS-associated cancers, we show that despite widespread reductions in translation and protein synthesis, certain oncogenic mRNAs are spared. During tumour initiation, the translational apparatus is redirected towards unconventional upstream initiation sites, enhancing the translational efficiency of oncogenic mRNAs. An in vivo RNA interference screen of translational regulators revealed that depletion of conventional eIF2 complexes has adverse effects on normal but not oncogenic growth. Conversely, the alternative initiation factor eIF2A is essential for cancer progression, during which it mediates initiation at these upstream sites, differentially skewing translation and protein expression. Our findings unveil a role for the translation of 5' untranslated regions in cancer, and expose new targets for therapeutic intervention.


Subject(s)
5' Untranslated Regions/genetics , Carcinogenesis/genetics , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Open Reading Frames/genetics , Peptide Chain Initiation, Translational/genetics , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Animals , Carcinogenesis/pathology , Carcinoma, Squamous Cell/metabolism , Disease Models, Animal , Disease Progression , Epidermis/embryology , Epidermis/metabolism , Epidermis/pathology , Eukaryotic Initiation Factor-2/metabolism , Female , Humans , Keratinocytes , Male , Mice , Oncogenes/genetics , Precancerous Conditions/genetics , Precancerous Conditions/metabolism , Precancerous Conditions/pathology , Prognosis , RNA Interference , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribosomes/metabolism , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Skin Neoplasms/metabolism
15.
Cell ; 167(5): 1323-1338.e14, 2016 11 17.
Article in English | MEDLINE | ID: mdl-27863246

ABSTRACT

Aged skin heals wounds poorly, increasing susceptibility to infections. Restoring homeostasis after wounding requires the coordinated actions of epidermal and immune cells. Here we find that both intrinsic defects and communication with immune cells are impaired in aged keratinocytes, diminishing their efficiency in restoring the skin barrier after wounding. At the wound-edge, aged keratinocytes display reduced proliferation and migration. They also exhibit a dampened ability to transcriptionally activate epithelial-immune crosstalk regulators, including a failure to properly activate/maintain dendritic epithelial T cells (DETCs), which promote re-epithelialization following injury. Probing mechanism, we find that aged keratinocytes near the wound edge don't efficiently upregulate Skints or activate STAT3. Notably, when epidermal Stat3, Skints, or DETCs are silenced in young skin, re-epithelialization following wounding is perturbed. These findings underscore epithelial-immune crosstalk perturbations in general, and Skints in particular, as critical mediators in the age-related decline in wound-repair.


Subject(s)
Aging/physiology , Lymphocyte Subsets/cytology , Signal Transduction , Wound Healing , Animals , Interleukin-6/administration & dosage , Keratinocytes/metabolism , Mice , Skin/cytology , Skin Physiological Phenomena , Wound Healing/drug effects
16.
Thromb Haemost ; 113(6): 1300-11, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25790442

ABSTRACT

Haemophilia A and B are characterised by a life-long bleeding predisposition, and several lines of evidence suggest that risks of atherothrombotic events may also be reduced. Establishing a direct correlation between coagulation factor levels, thrombotic risks and bleeding propensity has long been hampered by an inability to selectively and specifically inhibit coagulation factor levels. Here, the exquisite selectivity of gene silencing combined with a gene knockout (KO) approach was used to define the relative contribution of factor IX (fIX) to thrombosis and primary haemostasis in the rat. Using a lipid nanoparticle (LNP) formulation, we successfully delivered fIX siRNAs to the liver by intravenous administration. The knockdown (KD) of target gene mRNA was achieved rapidly (within 24 hour post-siRNA dosing), sustained (maintained for at least 7 days post dosing) and not associated with changes in mRNA expression levels of other coagulation factors. We found that intermediate levels of liver fIX mRNA silencing (60-95 %) translating into a 50-99 % reduction of plasma fIX activity provided protection from thrombosis without prolonging the cuticle bleeding time. Over 99 % inhibition of fIX activity was required to observe increase in bleeding, a phenotype confirmed in fIX KO rats. These data provide substantial evidence of a participation of fIX in the mechanisms regulating thrombosis prior to those regulating primary haemostasis, therefore highlighting the potential of fIX as a therapeutic target. In addition, hepatic mRNA silencing using LNP-encapsulated siRNAs may represent a promising novel approach for the chronic treatment and prevention of coagulation-dependent thrombotic disorders in humans.


Subject(s)
Factor IX/genetics , Hemophilia B/genetics , Hemorrhage/genetics , Liver/metabolism , RNA Interference , RNA, Small Interfering/genetics , RNAi Therapeutics , Thrombosis/prevention & control , Animals , Cell Line , Chlorides , Disease Models, Animal , Factor IX/metabolism , Ferric Compounds , Gene Expression Regulation , Genotype , Hemophilia B/blood , Hemorrhage/blood , Hemostasis/genetics , Male , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , Rats , Rats, Sprague-Dawley , Rats, Transgenic , Thrombosis/blood , Thrombosis/chemically induced , Thrombosis/genetics , Time Factors , Transfection
17.
Hypertension ; 62(2): 288-94, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23753405

ABSTRACT

The renal outer medullary potassium channel (ROMK, KCNJ1) mediates potassium recycling and facilitates sodium reabsorption through the Na(+)/K(+)/2Cl(-) cotransporter in the loop of Henle and potassium secretion at the cortical collecting duct. Human genetic studies indicate that ROMK homozygous loss-of-function mutations cause type II Bartter syndrome, featuring polyuria, renal salt wasting, and hypotension; humans heterozygous for ROMK mutations identified in the Framingham Heart Study have reduced blood pressure. ROMK null mice recapitulate many of the features of type II Bartter syndrome. We have generated an ROMK knockout rat model in Dahl salt-sensitive background by using zinc finger nuclease technology and investigated the effects of knocking out ROMK on systemic and renal hemodynamics and kidney histology in the Dahl salt-sensitive rats. The ROMK(-/-) pups recapitulated features identified in the ROMK null mice. The ROMK(+/-) rats, when challenged with a 4% salt diet, exhibited a reduced blood pressure compared with their ROMK(+/+) littermates. More importantly, when challenged with an 8% salt diet, the Dahl salt-sensitive rats with 50% less ROMK expression showed increased protection from salt-induced blood pressure elevation and signs of protection from renal injury. Our findings in ROMK knockout Dahl salt-sensitive rats, together with the previous reports in humans and mice, underscore a critical role of ROMK in blood pressure regulation.


Subject(s)
Blood Pressure , Potassium Channels, Inwardly Rectifying/physiology , Animals , Female , Heterozygote , Kidney/physiology , Male , Phenotype , Potassium Channels, Inwardly Rectifying/genetics , Rats , Rats, Inbred Dahl , Sodium-Potassium-Chloride Symporters/physiology , Solute Carrier Family 12, Member 1
18.
PLoS One ; 8(1): e54480, 2013.
Article in English | MEDLINE | ID: mdl-23336002

ABSTRACT

Diacylglycerol acyltransferase-1 (DGAT1) is a potential therapeutic target for treatment of obesity and related metabolic diseases. However, the degree of DGAT1 inhibition required for metabolic benefits is unclear. Here we show that partial DGAT1 deficiency in mice suppressed postprandial triglyceridemia, led to elevations in glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) only following meals with very high lipid content, and did not protect from diet-induced obesity. Maximal DGAT1 inhibition led to enhanced GLP-1 and PYY secretion following meals with physiologically relevant lipid content. Finally, combination of DGAT1 inhibition with dipeptidyl-peptidase-4 (DPP-4) inhibition led to further enhancements in active GLP-1 in mice and dogs. The current study suggests that targeting DGAT1 to enhance postprandial gut hormone secretion requires maximal inhibition, and suggests combination with DPP-4i as a potential strategy to develop DGAT1 inhibitors for treatment of metabolic diseases.


Subject(s)
Diacylglycerol O-Acyltransferase/genetics , Gastrointestinal Hormones/metabolism , Gastrointestinal Tract/metabolism , Postprandial Period , Animals , Base Sequence , Diacylglycerol O-Acyltransferase/deficiency , Diacylglycerol O-Acyltransferase/metabolism , Diet , Dipeptidyl Peptidase 4/genetics , Dipeptidyl Peptidase 4/metabolism , Dogs , Enzyme Activation , Female , Gastric Emptying/genetics , Gene Dosage , Gene Expression Regulation , Gene Order , Genotype , Glucagon-Like Peptide 1/metabolism , Lipid Metabolism , Male , Mice , Mice, Knockout , Molecular Sequence Data , Triglycerides/blood
19.
Mol Pharmacol ; 81(2): 220-7, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22049154

ABSTRACT

The development of zinc finger nuclease (ZFN) technology has enabled the genetic engineering of the rat genome. The ability to manipulate the rat genome has great promise to augment the utility of rats for biological and pharmacological studies. A Wistar Hannover rat model lacking the multidrug resistance protein Mdr1a P-glycoprotein (P-gp) was generated using a rat Mdr1a-specific ZFN. Mdr1a was completely absent in tissues, including brain and small intestine, of the knockout rat. Pharmacokinetic studies with the Mdr1a P-gp substrates loperamide, indinavir, and talinolol indicated that Mdr1a was functionally inactive in the blood-brain barrier and intestine in Mdr1a(-/-) rats. To identify possible compensatory mechanisms in Mdr1a(-/-) rats, the expression levels of drug-metabolizing enzyme and transporter-related genes were compared in brain, liver, kidney, and intestine of male and female Mdr1a(-/-) and control rats. In general, alterations in gene expression of these genes in Mdr1a(-/-) rats seemed to be modest, with more changes in female than in male rats. Taken together, our studies demonstrate that the ZFN-generated Mdr1a(-/-) rat will be a valuable tool for central nervous system drug target validation and determining the role of P-gp in drug absorption and disposition.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/metabolism , Genetic Engineering/methods , Zinc Fingers/genetics , ATP Binding Cassette Transporter, Subfamily B/deficiency , Animals , Endonucleases , Female , Gene Expression , Genome , Male , Rats , Rats, Transgenic , Rats, Wistar , Tissue Distribution
20.
Dev Dyn ; 238(7): 1803-12, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19479951

ABSTRACT

Tight regulation of Notch pathway signaling is important in many aspects of embryonic development. Notch signaling can be modulated by expression of fringe genes, encoding glycosyltransferases that modify EGF repeats in the Notch receptor. Although Lunatic fringe (Lfng) has been shown to play important roles in vertebrate segmentation, comparatively little is known regarding the developmental functions of the other vertebrate fringe genes, Radical fringe (Rfng) and Manic fringe (Mfng). Here we report that Mfng expression is not required for embryonic development. Further, we find that despite significant overlap in expression patterns, we detect no obvious synergistic defects in mice in the absence of two, or all three, fringe genes during development of the axial skeleton, limbs, hindbrain, and cranial nerves.


Subject(s)
Body Patterning/genetics , Bone and Bones/embryology , Embryonic Development/genetics , Extremities/embryology , Proteins/physiology , Rhombencephalon/embryology , Animals , Embryo, Mammalian , Fertility/genetics , Fertility/physiology , Fetal Viability/genetics , Fetal Viability/physiology , Gene Deletion , Glucosyltransferases , Mice , Mice, Inbred C57BL , Mice, Transgenic , Multigene Family/genetics , Multigene Family/physiology , Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL