Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 14(1)2023 01 09.
Article in English | MEDLINE | ID: mdl-36672920

ABSTRACT

Conotruncal heart defects (CTDs) are heart malformations that affect the cardiac outflow tract and typically cause significant morbidity and mortality. Evidence from epidemiological studies suggests that maternal folate intake is associated with a reduced risk of heart defects, including CTD. However, it is unclear if folate-related gene variants and maternal folate intake have an interactive effect on the risk of CTDs. In this study, we performed targeted sequencing of folate-related genes on DNA from 436 case families with CTDs who are enrolled in the National Birth Defects Prevention Study and then tested for common and rare variants associated with CTD. We identified risk alleles in maternal MTHFS (ORmeta = 1.34; 95% CI 1.07 to 1.67), maternal NOS2 (ORmeta = 1.34; 95% CI 1.05 to 1.72), fetal MTHFS (ORmeta = 1.35; 95% CI 1.09 to 1.66), and fetal TCN2 (ORmeta = 1.38; 95% CI 1.12 to 1.70) that are associated with an increased risk of CTD among cases without folic acid supplementation. We detected putative de novo mutations in genes from the folate, homocysteine, and transsulfuration pathways and identified a significant association between rare variants in MGST1 and CTD risk. Results suggest that periconceptional folic acid supplementation is associated with decreased risk of CTD among individuals with susceptible genotypes.


Subject(s)
Folic Acid , Heart Defects, Congenital , Humans , Folic Acid/metabolism , Heart Defects, Congenital/genetics , Heart Defects, Congenital/metabolism , Genotype , Fetus/metabolism , Heart
2.
Metabolites ; 7(2)2017 Jun 08.
Article in English | MEDLINE | ID: mdl-28594380

ABSTRACT

The prevalence of the overweight and obesity is on the rise worldwide. Obesity can increase the risk of certain cancers and liver steatosis development. Previously, we reported that obesity increased liver steatosis in a mammary tumor model, but little is known about the effects of obesity in the liver in regard to global DNA methylation, DNA damage, and oxidative/nitrosative stress. Using a mammary tumor model, we investigated the effects of obesity on oxidative stress and DNA reaction. Five-week-old lean and obese female rats were used. At 50 days of age, all rats received 7,12-dimethylbenz(α)anthracene (DMBA) and were sacrificed 155 days later. HPLC with electrochemical and ultraviolet detection and LC-MS were used. Obesity caused higher (p < 0.0004) methionine levels, had no effect (p < 0.055) on SAM levels, caused lower (p < 0.0005) SAH levels, caused higher (p < 0.0005) SAM/SAH ratios, and increased (p < 0.02) global DNA methylation. Levels of free reduced GSH were not significantly lower (p < 0.08), but free oxidized GSSG was higher (p < 0.002) in obese rats. The GSH/GSSG ratio was lower (p < 0.0001), and oxidized guanosine was higher (p < 0.002) in DNA of obese rats compared to lean rats. Obesity caused significant oxidative/nitrosative stress, oxidative DNA damage, and change of DNA methylation pattern in the liver, and these changes may contribute to the development of liver steatosis in breast cancer models.

3.
J Mol Graph Model ; 56: 43-52, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25544389

ABSTRACT

CYP2E1 metabolizes a wide array of small, hydrophobic molecules, resulting in their detoxification or activation into carcinogens through Michaelis-Menten as well as cooperative mechanisms. Nevertheless, the molecular determinants for CYP2E1 specificity and metabolic efficiency toward these compounds are still unknown. Herein, we employed computational docking studies coupled to molecular dynamics simulations to provide a critical perspective for understanding a structural basis for cooperativity observed for an array of azoles from our previous binding and catalytic studies (Hartman et al., 2014). The resulting 28 CYP2E1 complexes in this study revealed a common passageway for azoles that included a hydrophobic steric barrier causing a pause in movement toward the active site. The entrance to the active site acted like a second sieve to restrict access to the inner chamber. Collectively, these interactions impacted the final orientation of azoles reaching the active site and hence could explain differences in their biochemical properties observed in our previous studies, such as the consequences of methylation at position 5 of the azole ring. The association of a second azole demonstrated significant differences in interactions stabilizing the bound complex than observed for the first binding event. Intermolecular interactions occurred between the two azoles as well as CYP2E1 residue side chains and backbone and involved both hydrophobic contacts and hydrogen bonds. The relative importance of these interactions depended on the structure of the respective azoles indicating the absence of specific defining criteria for binding unlike the well-characterized dominant role of hydrophobicity in active site binding. Consequently, the structure activity relationships described here and elsewhere are necessary to more accurately identify factors impacting the observation and significance of cooperativity in CYP2E1 binding and catalysis toward drugs, dietary compounds, and pollutants.


Subject(s)
Azoles/chemistry , Cytochrome P-450 CYP2E1/chemistry , Cytochrome P-450 Enzyme Inhibitors/chemistry , Molecular Dynamics Simulation , Amino Acid Sequence , Animals , Catalytic Domain , Drug Design , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Kinetics , Ligands , Molecular Docking Simulation , Molecular Sequence Data , Protein Binding , Rabbits , Static Electricity , Structure-Activity Relationship , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...